Which physiological change in a patient with septic shock indicates a poor prognosis?

Intensive care medicine deals with the critically ill; these patients usually have multiple organ failure, and complex medical conditions. The mortality in Australia and New Zealand among this population is approximately 16.1%, with approximately 24.2% having existing co-morbidities, and 23.4% of these patients experiencing sepsis or septic shock. Sepsis is a clinical syndrome that traditionally was regarded as a physiological maladaptive response to a foreign pathogen and ranges in disease severity from simple sepsis to septic shock, a life threatening condition, associated with multiple organ failure. Sepsis has profound effects on all systems of the body, and most notably the cardiovascular, renal and hepatic systems. There has been much research into the septic critically ill patient and recent developments in basic pharmacology and physiology has yielded results applicable to clinical practice. Sepsis may induce a state of increased cardiac output, which has significant effects on drug pharmacokinetics and pharmacodynamics. This increased cardiac output increases both renal and hepatic blood flow, and alters rates of antibiotic metabolism, and excretion. There are also alterations in the fluid compartments of the septic critically ill, that results in an altered volume of distribution, and ultimately decreased antibiotic concentrations at their site of action. This article will examine and review in detail the septic critically ill patient, and the effects that sepsis has on physiology and the resulting altered antibiotic pharmacokinetics and pharmacodynamics. Current knowledge suggests that the medical prescriber should be weary of antibiotic dosing in the septic critically ill, and consider alternative dosing regimes that are individualized to the patient in order to maximize efficacy.

Keywords: Critical care, sepsis, physiology, multiple organ, physiological maladaptive response, antibiotic dosing, antibiotic pharmacokinetics, cardiovascular, organ systems, proinflammatory mediators, immune-propagation, hydrophilic antimicrobial agents, preexisting cardiac disease, host immune system, vasoactive medications

Sepsis and septic shock are medical emergencies and must be treated immediately.

It's likely you'll be admitted to an intensive care unit (ICU) for urgent treatment and to carefully monitor your progress. In some cases treatment may begin in the emergency department.

Oxygen therapy

To help you breathe more easily, you'll be given oxygen through a face mask, a tube inserted into your nose, or an endotracheal tube inserted into your mouth. If you have severe shortness of breath, a mechanical ventilator may be used.

Increasing blood flow

You'll probably be given fluids directly into a vein. This will help raise your blood pressure by increasing the amount of fluid in your blood.

To increase the blood flow to your vital organs, such as your brain, liver, kidneys and heart, you may be prescribed inotropic medicines or vasopressors.

Inotropic medicines 

Inotropic medicines (inotropes), such as dobutamine, stimulate your heart. They increase the strength of your heartbeat, which helps get oxygen-rich blood to your tissues and organs, where it's needed.

Vasopressors

Vasopressors include:

  • dopamine
  • adrenaline
  • noradrenaline

These medicines will cause your blood vessels to narrow, increasing your blood pressure and the flow of blood around your body. This will allow your vital organs to start functioning properly.

Antibiotics

Antibiotics are often used to treat the associated bacterial infection. The type of antibiotic used depends on the type of bacterial infection and where in the body the infection started.

You may be started on antibiotics immediately to increase your chances of survival. Initially, two or three types of antibiotics may be used. The most effective type of antibiotic can be used once the bacterium responsible for the infection is identified.

Surgery

In severe cases of sepsis or septic shock, the large decrease in blood pressure and blood flow can kill organ tissue. If this happens, surgery may be required to remove the dead tissue.

History

Sepsis or septic shock is systemic inflammatory response syndrome (SIRS) secondary to a documented infection (see Shock Classification, Terminology, and Staging). Detrimental host responses to infection occupy a continuum that ranges from sepsis to septic shock and multiple organ dysfunction syndrome (MODS). The specific clinical features depend on where the patient falls on that continuum. Symptoms of sepsis are often nonspecific and include the following:

  • Fever (usually >101°F [38°C]), chills, and rigors

  • Confusion

  • Anxiety

  • Difficulty breathing

  • Fatigue and malaise

  • Nausea and vomiting

These symptoms are not pathognomonic for sepsis syndromes and may be present in a wide variety of other conditions. Alternatively, typical symptoms of systemic inflammation may be absent in sepsis, especially in elderly individuals. In sepsis, symptoms may include decreased urine output and cyanosis (blueish discoloration of the lips and/or digits).

Fever is a common symptom, though it may be absent in elderly or immunosuppressed patients. The hypothalamus resets in sepsis, so that heat production and heat loss are balanced in favor of a higher temperature. An inquiry should be made about fever onset (abrupt or gradual), duration, and maximal temperature. These features have been associated with increased infectious burden and severity of illness. However, fever alone is an insensitive indicator of sepsis; in fact, hypothermia is more predictive of illness severity and death.

Chills are a secondary symptom associated with fever, developing as a consequence of increased muscular activity that produces heat and raises the body temperature. Sweating occurs when the hypothalamus returns to its normal set point and senses the higher body temperature, stimulating perspiration to evaporate excess body heat.

Mental function is often altered. Mild disorientation or confusion is especially common in elderly individuals. Apprehension, anxiety, agitation, and, eventually, coma are manifestations of sepsis. The exact cause of metabolic encephalopathy is not known; altered amino acid metabolism may play a role.

Hyperventilation with respiratory alkalosis is a common feature of patients with sepsis. This feature results from stimulation of the medullary respiratory center by endotoxins and other inflammatory mediators.

Localizing symptoms referable to organ systems may provide useful clues to the etiology of sepsis. Such symptoms include the following:

  • Head and neck infections – Severe headache, neck stiffness, altered mental status, earache, sore throat, sinus pain or tenderness, and cervical or submandibular lymphadenopathy

  • Chest and pulmonary infections – Cough (especially if productive), pleuritic chest pain, dyspnea, dullness on percussion, bronchial breath sounds, localized rales, or any evidence of consolidation

  • Cardiac infections – Any new murmur, especially in patients with a history of injection or intravenous (IV) drug use

  • Abdominal and gastrointestinal (GI) infections – Diarrhea, abdominal pain, abdominal distention, guarding or rebound tenderness, and rectal tenderness or swelling

  • Pelvic and genitourinary (GU) infections – Pelvic or flank pain, adnexal tenderness or masses, vaginal or urethral discharge, dysuria, frequency, and urgency

  • Bone and soft-tissue infections – Localized limb pain or tenderness, focal erythema, edema, and swollen joint, crepitus in necrotizing infections, and joint effusions

  • Skin infections – Petechiae, purpura, erythema, ulceration, bullous formation, and fluctuance

Physical Examination

The hallmarks of sepsis and septic shock are changes that occur at the microvascular and cellular level with diffuse activation of inflammatory and coagulation cascades, vasodilation and vascular maldistribution, capillary endothelial leakage, and dysfunctional utilization of oxygen and nutrients at the cellular level. The challenge for clinicians is to recognize that this process is under way when it may not be clearly manifested in the vital signs or clinical examination.

The physical examination should first involve assessment of the patient’s general condition, including an assessment of airway, breathing, and circulation (ie, the ABCs), as well as mental status. An acutely ill, flushed, and toxic appearance is observed universally in patients with serious infections.

Examine vital signs, and observe for signs of hypoperfusion. Carefully examine the patient for evidence of localized infection. Ensure that the patient’s body temperature is measured accurately. Rectal temperatures should be obtained, as oral and tympanic temperatures are not always reliable. Fever may be absent, but patients generally have tachypnea and tachycardia.

Pay attention to the patient’s skin color and temperature. Pallor or grayish or mottled skin are signs of poor tissue perfusion seen in septic shock. In the early stages of sepsis, cardiac output is well maintained or even increased. The vasodilation may result in warm skin, warm extremities, and normal capillary refill (warm shock). As sepsis progresses, stroke volume and cardiac output fall. The patients begin to manifest the signs of poor perfusion, including cool skin, cool extremities, and delayed capillary refill (cold shock). In sepsis, symptoms may include decreased urine output and cyanosis (blueish discoloration of the lips and/or digits).

Petechiae or purpura (see the image below) can be associated with disseminated intravascular coagulation (DIC). These findings are an ominous sign.

Which physiological change in a patient with septic shock indicates a poor prognosis?
A 26-year-old woman developed rapidly progressive shock associated with purpura and signs of meningitis. Her blood culture results confirmed the presence of Neisseria meningitidis. The skin manifestation seen in this image is characteristic of severe meningococcal infection and is called purpura fulminans.

Tachycardia is a common feature of sepsis and indicative of a systemic response to stress; it is the physiologic mechanism by which cardiac output, and thus oxygen delivery to tissues, is increased. Tachycardia indicates hypovolemia and the need for intravascular fluid repletion; however, an increased heart rate often persists in sepsis despite adequate fluid repletion. Narrow pulse pressure and tachycardia are considered the earliest signs of shock. Tachycardia may also be a result of fever itself.

Tachypnea is a common and often underappreciated feature of sepsis. It is an indicator of pulmonary dysfunction and is commonly found in pneumonia and acute respiratory distress syndrome (ARDS), both of which are associated with increased mortality in sepsis. Stimulation of the medullary ventilatory center by endotoxins and other inflammatory mediators is a possible cause. As tissue hypoperfusion ensues, the respiratory rate also rises to compensate for metabolic acidosis. The patient often feels short of breath or appears mildly anxious.

Altered mental status is another common feature of sepsis. It is considered a sign of organ dysfunction and is associated with increased mortality. Mild disorientation or confusion is especially common in elderly individuals. Other manifestations include apprehension, anxiety, and agitation. Profound cases may involve obtundation or comatose states. The cause of these mental status abnormalities is not entirely understood, but in addition to cerebral hypoperfusion, altered amino acid metabolism has been proposed as a causative factor.

In septic shock, it is important to identify any potential source of infection. This is particularly important in cases where a site of infection can be removed or drained, as in certain intra-abdominal infections, soft-tissue abscesses and fasciitis, or perirectal abscesses. The following physical signs help localize the source of an infection:

  • Central nervous system (CNS) infection – Profound depression in mental status and signs of meningismus (neck stiffness)

  • Head and neck infections – Inflamed or swollen tympanic membranes, sinus tenderness, nasal congestion or exudate, pharyngeal erythema and exudates, inspiratory stridor, and cervical lymphadenopathy

  • Chest and pulmonary infections – Dullness on percussion, bronchial breath sounds, localized rales, or any evidence of consolidation

  • Cardiac infections – Any new murmur, especially in patients with a history of injection or IV drug use

  • Abdominal and GI infections – Abdominal distention, localized tenderness, guarding or rebound tenderness, and rectal tenderness or swelling

  • Pelvic and GU infections – Costovertebral angle tenderness, pelvic tenderness, pain on cervical motion, adnexal tenderness or masses, and cervical discharge

  • Bone and soft-tissue infections – Focal erythema, edema, tenderness, crepitus in necrotizing infections, fluctuance, pain with joint range of motion, and joint effusions and associated warmth or erythema

  • Skin infections – Petechiae, purpura, erythema, ulceration, bullous formation, and fluctuance

Complications

End-organ failure is a major contributor to mortality in sepsis and septic shock. The complications with the greatest adverse effect on survival are ARDS, DIC, and acute kidney injury (AKI; previously termed acute renal failure [ARF]).

Acute respiratory distress syndrome

Acute lung injury (ALI)—mild ARDS, by the Berlin Definition [10] —leading to moderate or severe ARDS is a major complication of sepsis and septic shock. The incidence of ARDS is approximately 18% in patients with septic shock, and mortality approaches 50%. ARDS also leads to prolonged intensive care unit (ICU) stays and an increased incidence of ventilator-associated pneumonia.

ARDS secondary to sepsis demonstrates the manifestations of underlying sepsis and the associated multiple organ dysfunction. Pulmonary manifestations include acute respiratory distress and acute respiratory failure resulting from severe hypoxemia caused by intrapulmonary shunting. Fever and leukocytosis may be present secondary to the lung inflammation.

The severity of ARDS may range from mild lung injury to severe respiratory failure. The onset of ARDS usually is within 12-48 hours of the inciting event. The patients demonstrate severe dyspnea at rest, tachypnea, and hypoxemia; anxiety and agitation are also present.

The frequency of ARDS in sepsis has been reported to range from 18% to 38% (with gram-negative sepsis, 18-25%). Sepsis and multiorgan failure are the most common cause of death in ARDS patients. Approximately 16% of patients with ARDS die of irreversible respiratory failure. Most patients who show improvement achieve maximal recovery by 6 months, with lung function improving to 80-90% of predicted values.

Acute kidney injury

Sepsis is the most common cause of AKI (ARF), which affects 40-70% of all critically ill patients, depending on how AKI is defined (eg, according to the RIFLE [risk, injury, failure, loss, and end stage] or AKIN [Acute Kidney Injury Network] classifications]). [43] AKI complicates therapy and worsens the overall outcome. [53] There is an increased risk of mortality when urosepsis is present with sepsis and septic shock [54] ; however, the global prognosis for patients with urosepsis is better than that for those with sepsis from other infectious sites.

Other complications in septic shock

Other complications include the following:

  • DIC (also occurring in 40% of patients with septic shock)

  • Chronic renal dysfunction

  • Myocardial ischemia and dysfunction

  • Liver failure

  • Other complications related to prolonged hypotension and organ dysfunction

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23. 315 (8):801-10. [QxMD MEDLINE Link].

  2. Solomkin JS, Mazuski JE, Bradley JS, Rodvold KA, Goldstein EJ, Baron EJ, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis. 2010 Jan 15. 50(2):133-64. [QxMD MEDLINE Link].

  3. Brun-Buisson C, Doyon F, Carlet J, et al. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA. 1995 Sep 27. 274(12):968-74. [QxMD MEDLINE Link].

  4. Sands KE, Bates DW, Lanken PN, Graman PS, Hibberd PL, Kahn KL, et al. Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA. 1997 Jul 16. 278(3):234-40. [QxMD MEDLINE Link].

  5. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006 Jun. 34(6):1589-96. [QxMD MEDLINE Link].

  6. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992 Jun. 101(6):1644-55. [QxMD MEDLINE Link].

  7. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992 Jun. 20(6):864-74. [QxMD MEDLINE Link].

  8. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003 Apr. 31(4):1250-6. [QxMD MEDLINE Link].

  9. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994 Mar. 149(3 Pt 1):818-24. [QxMD MEDLINE Link].

  10. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20. 307(23):2526-33. [QxMD MEDLINE Link].

  11. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013 Feb. 41(2):580-637. [QxMD MEDLINE Link].

  12. Sallisalmi M, Tenhunen J, Yang R, Oksala N, Pettilä V. Vascular adhesion protein-1 and syndecan-1 in septic shock. Acta Anaesthesiol Scand. 2012 Mar. 56(3):316-22. [QxMD MEDLINE Link].

  13. Cinel I, Opal SM. Molecular biology of inflammation and sepsis: a primer. Crit Care Med. 2009 Jan. 37(1):291-304. [QxMD MEDLINE Link].

  14. Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med. 1999 Jan 21. 340(3):207-14. [QxMD MEDLINE Link].

  15. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003 Jan 9. 348(2):138-50. [QxMD MEDLINE Link].

  16. Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S, et al. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Ann Emerg Med. 2006 Jul. 48(1):28-54. [QxMD MEDLINE Link].

  17. Kothari N, Bogra J, Kohli M, Malik A, Kothari D, Srivastava S, et al. Role of active nitrogen molecules in progression of septic shock. Acta Anaesthesiol Scand. 2012 Mar. 56(3):307-15. [QxMD MEDLINE Link].

  18. Crouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion. 2004 Sep. 4(5-6):729-41. [QxMD MEDLINE Link].

  19. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013 Mar. 13(3):260-8. [QxMD MEDLINE Link]. [Full Text].

  20. Kalil AC, Florescu DF. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit Care Med. 2009 Aug. 37(8):2350-8. [QxMD MEDLINE Link].

  21. Lorente JA, Landín L, De Pablo R, Renes E, Rodríguez-Díaz R, Liste D. Effects of blood transfusion on oxygen transport variables in severe sepsis. Crit Care Med. 1993 Sep. 21(9):1312-8. [QxMD MEDLINE Link].

  22. Schuetz P, Jones AE, Aird WC, Shapiro NI. Endothelial cell activation in emergency department patients with sepsis-related and non-sepsis-related hypotension. Shock. 2011 Aug. 36(2):104-8. [QxMD MEDLINE Link]. [Full Text].

  23. Levi M, ten Cate H, van der Poll T, van Deventer SJ. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA. 1993 Aug 25. 270(8):975-9. [QxMD MEDLINE Link].

  24. Mammen EF. Antithrombin III and sepsis. Intensive Care Med. 1998 Jul. 24(7):649-50. [QxMD MEDLINE Link].

  25. Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care. 2005. 9 Suppl 4:S20-6. [QxMD MEDLINE Link].

  26. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001 Aug 23. 345(8):588-95. [QxMD MEDLINE Link].

  27. Katzenstein AL, Myers JL, Mazur MT. Acute interstitial pneumonia. A clinicopathologic, ultrastructural, and cell kinetic study. Am J Surg Pathol. 1986 Apr. 10(4):256-67. [QxMD MEDLINE Link].

  28. Cetinbas F, Yelken B, Gulbas Z. Role of glutamine administration on cellular immunity after total parenteral nutrition enriched with glutamine in patients with systemic inflammatory response syndrome. J Crit Care. 2010 Dec. 25(4):661.e1-6. [QxMD MEDLINE Link].

  29. Hamzaoui O, Carlet J. Organ dysfunctions during severe sepsis and septic-like syndromes: epidemiology, classification, and mechanism. Cavaillon J-M, Adrie C, eds. Sepsis and Non-infectious Systemic Inflammation: From Biology to Critical Care. .Weinheim, Germany: Wiley-VCH Verlag GmbH; 2009. 57-77.

  30. Baluch A, Janoo A, Lam K, Hoover J, Kaye A. Septic shock: review and anesthetic considerations. Middle East J Anesthesiol. 2007 Feb. 19(1):71-86. [QxMD MEDLINE Link].

  31. Kotb M. Diseases due to encapsulated bacteria. Kaslow RA, McNicholl JM, Hill AVS, Kotb M, eds. Genetic Susceptibility to Infectious Diseases. New York, NY: Oxford University Press; 2008. 351-71.

  32. Kramnik I. Genetic dissection of host resistance to Mycobacterium tuberculosis: the sst1 locus and the Ipr1 gene. Curr Top Microbiol Immunol. 2008. 321:123-48. [QxMD MEDLINE Link].

  33. Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin Microbiol Rev. 2009 Apr. 22(2):370-85, Table of Contents. [QxMD MEDLINE Link]. [Full Text].

  34. Kotb M, Norrby-Teglund A, McGeer A, El-Sherbini H, Dorak MT, Khurshid A, et al. An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat Med. 2002 Dec. 8(12):1398-404. [QxMD MEDLINE Link].

  35. Nooh MM, Nookala S, Kansal R, Kotb M. Individual genetic variations directly effect polarization of cytokine responses to superantigens associated with streptococcal sepsis: implications for customized patient care. J Immunol. 2011 Mar 1. 186(5):3156-63. [QxMD MEDLINE Link].

  36. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008 Jan 10. 358(2):111-24. [QxMD MEDLINE Link].

  37. Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012 May 31. 366(22):2055-64. [QxMD MEDLINE Link].

  38. Levy MM, Artigas A, Phillips GS, Rhodes A, Beale R, Osborn T, et al. Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis. 2012 Dec. 12(12):919-24. [QxMD MEDLINE Link].

  39. Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira JP, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA. 2013 Mar 20. 309(11):1154-62. [QxMD MEDLINE Link].

  40. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001 Jul. 29(7):1303-10. [QxMD MEDLINE Link].

  41. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003 Apr 17. 348(16):1546-54. [QxMD MEDLINE Link].

  42. Wang HE, Shapiro NI, Angus DC, Yealy DM. National estimates of severe sepsis in United States emergency departments. Crit Care Med. 2007 Aug. 35(8):1928-36. [QxMD MEDLINE Link].

  43. Hall MJ, Williams SN, DeFrances CJ, Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief. 2011 Jun. 1-8. [QxMD MEDLINE Link].

  44. Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013 May. 41(5):1167-74. [QxMD MEDLINE Link].

  45. Shapiro N, Howell MD, Bates DW, Angus DC, Ngo L, Talmor D. The association of sepsis syndrome and organ dysfunction with mortality in emergency department patients with suspected infection. Ann Emerg Med. 2006 Nov. 48(5):583-90, 590.e1. [QxMD MEDLINE Link].

  46. Mayr FB, Yende S, Linde-Zwirble WT, Peck-Palmer OM, Barnato AE, Weissfeld LA, et al. Infection Rate and Acute Organ Dysfunction Risk as Explanations for Racial Differences in Severe Sepsis. JAMA. Jun 2010. 303(24):2495-2503.

  47. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014 Apr 2. 311(13):1308-16. [QxMD MEDLINE Link].

  48. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA. 1995 Jan 11. 273(2):117-23. [QxMD MEDLINE Link].

  49. Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med. 2000. 26 Suppl 1:S64-74. [QxMD MEDLINE Link].

  50. Jung B, Nougaret S, Chanques G, et al. The Absence of Adrenal Gland Enlargement during Septic Shock Predicts Mortality: A Computed Tomography Study of 239 Patients. Anesthesiology. 2011 Aug. 115(2):334-343. [QxMD MEDLINE Link].

  51. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006 Jun. 34(6):1589-96. [QxMD MEDLINE Link].

  52. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010 Oct 27. 304(16):1787-94. [QxMD MEDLINE Link].

  53. Dennen P, Douglas IS, Anderson R. Acute kidney injury in the intensive care unit: an update and primer for the intensivist. Crit Care Med. 2010 Jan. 38(1):261-75. [QxMD MEDLINE Link].

  54. Sepsis syndrome in urology (urosepsis). Grabe M, Bjerklund-Johansen TE, et al, eds. Guidelines on urological infections. Arnhem, The Netherlands: European Association of Urology (EAU); 2011. 33-9. [Full Text].

  55. Rangel-Frausto MS, Pittet D, Hwang T, Woolson RF, Wenzel RP. The dynamics of disease progression in sepsis: Markov modeling describing the natural history and the likely impact of effective antisepsis agents. Clin Infect Dis. 1998 Jul. 27(1):185-90. [QxMD MEDLINE Link].

  56. Annane D, Aegerter P, Jars-Guincestre MC, Guidet B. Current epidemiology of septic shock: the CUB-Réa Network. Am J Respir Crit Care Med. 2003 Jul 15. 168(2):165-72. [QxMD MEDLINE Link].

  57. Yealy DM, Kellum JA, Huang DT, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014 May 1. 370(18):1683-93. [QxMD MEDLINE Link]. [Full Text].

  58. Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014 Oct 16. 371(16):1496-506. [QxMD MEDLINE Link].

  59. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015 Apr 2. 372(14):1301-11. [QxMD MEDLINE Link].

  60. [Guideline] Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008 Jan. 36(1):296-327. [QxMD MEDLINE Link].

  61. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005 Mar 5-11. 365(9462):871-5. [QxMD MEDLINE Link].

  62. Shapiro NI, Howell MD, Talmor D, Nathanson LA, Lisbon A, Wolfe RE, et al. Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med. 2005 May. 45(5):524-8. [QxMD MEDLINE Link].

  63. Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004 Aug. 32(8):1637-42. [QxMD MEDLINE Link].

  64. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010 Feb 24. 303(8):739-46. [QxMD MEDLINE Link]. [Full Text].

  65. Marik PE, Pastores SM, Annane D, Meduri GU, Sprung CL, Arlt W, et al. Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med. 2008 Jun. 36(6):1937-49. [QxMD MEDLINE Link].

  66. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007 Mar 1. 44 Suppl 2:S27-72. [QxMD MEDLINE Link].

  67. Griffee MJ, Merkel MJ, Wei KS. The role of echocardiography in hemodynamic assessment of septic shock. Crit Care Clin. 2010 Apr. 26(2):365-82, table of contents. [QxMD MEDLINE Link].

  68. Kalil AC. Wanted: early goal-directed therapy for septic shock--dead or alive, but not critically ill!. Intensive Care Med. 2010 Jan. 36(1):1-3. [QxMD MEDLINE Link].

  69. NIH Press Release. Sepsis study comparing three treatment methods shows same survival rate. National Institutes of Health. Available at http://www.nih.gov/news/health/mar2014/nigms-18.htm. Accessed: March 24, 2014.

  70. A Randomized Trial of Protocol-Based Care for Early Septic Shock. N Engl J Med. 2014 Mar 18. [QxMD MEDLINE Link].

  71. Khanna A, English SW, Wang XS, et al. Angiotensin II for the Treatment of Vasodilatory Shock. N Engl J Med. 2017 Aug 3. 377 (5):419-430. [QxMD MEDLINE Link].

  72. Martin G. Angiotensin II: New Hope for Treating Septic Shock?. Medscape News & Perspective. Available at https://www.medscape.com/viewarticle/887520. October 27, 2017; Accessed: October 30, 2017.

  73. Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med. 1993 Jul. 21 (7):1012-9. [QxMD MEDLINE Link].

  74. Sevransky JE, Levy MM, Marini JJ. Mechanical ventilation in sepsis-induced acute lung injury/acute respiratory distress syndrome: an evidence-based review. Crit Care Med. 2004 Nov. 32(11 Suppl):S548-53. [QxMD MEDLINE Link].

  75. Dellinger RP, Carlet JM, Masur H. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004 Mar. 32(3):858-73. [QxMD MEDLINE Link].

  76. Royal College of Obstetricians and Gynaecologists (RCOG). Maternal collapse in pregnancy and the puerperium. 2011.

  77. Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: please "mind the gap"!. Intensive Care Med. 2013 Sep. 39(9):1653-5. [QxMD MEDLINE Link]. [Full Text].

  78. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013 Jun. 41(6):1412-20. [QxMD MEDLINE Link].

  79. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008 Jul. 134(1):172-8. [QxMD MEDLINE Link].

  80. Nagdev AD, Merchant RC, Tirado-Gonzalez A, Sisson CA, Murphy MC. Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure. Ann Emerg Med. 2010 Mar. 55(3):290-5. [QxMD MEDLINE Link].

  81. Asfar P, Meziani F, Hamel JF, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014 Apr 24. 370(17):1583-93. [QxMD MEDLINE Link].

  82. Vincent JL, Gerlach H. Fluid resuscitation in severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004 Nov. 32(11 Suppl):S451-4. [QxMD MEDLINE Link].

  83. Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2011 Feb. 39(2):386-91. [QxMD MEDLINE Link].

  84. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004 May 27. 350(22):2247-56. [QxMD MEDLINE Link].

  85. Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Ann Intensive Care. 2014. 4:38. [QxMD MEDLINE Link]. [Full Text].

  86. Schortgen F, Clabault K, Katsahian S, Devaquet J, Mercat A, Deye N, et al. Fever control using external cooling in septic shock: a randomized controlled trial. Am J Respir Crit Care Med. 2012 May 15. 185(10):1088-95. [QxMD MEDLINE Link].

  87. Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014 Jun 4. 311(21):2181-90. [QxMD MEDLINE Link].

  88. Vasu TS, Cavallazzi R, Hirani A, et al. Norephinephrine or Dopamine for Septic Shock: A Systematic Review of Randomized Clinical Trials. J Intensive Care Med. 2011 Mar 24. [QxMD MEDLINE Link].

  89. De Backer D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis*. Crit Care Med. 2012 Mar. 40(3):725-30. [QxMD MEDLINE Link].

  90. Beale RJ, Hollenberg SM, Vincent JL, Parrillo JE. Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med. 2004 Nov. 32(11 Suppl):S455-65. [QxMD MEDLINE Link].

  91. Russell JA. Vasopressin in septic shock. Crit Care Med. 2007 Sep. 35(9 Suppl):S609-15. [QxMD MEDLINE Link].

  92. Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008 Feb 28. 358(9):877-87. [QxMD MEDLINE Link].

  93. Hayes MA, Timmins AC, Yau EH, et al. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994 Jun 16. 330(24):1717-22. [QxMD MEDLINE Link].

  94. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008 Mar. 8(3):159-66. [QxMD MEDLINE Link].

  95. Bochud PY, Bonten M, Marchetti O, Calandra T. Antimicrobial therapy for patients with severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004 Nov. 32(11 Suppl):S495-512. [QxMD MEDLINE Link].

  96. Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med. 2003 Feb 20. 348(8):727-34. [QxMD MEDLINE Link].

  97. Cronin L, Cook DJ, Carlet J, Heyland DK, King D, Lansang MA, et al. Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med. 1995 Aug. 23(8):1430-9. [QxMD MEDLINE Link].

  98. Kalil AC, Sun J. Low-dose steroids for septic shock and severe sepsis: the use of Bayesian statistics to resolve clinical trial controversies. Intensive Care Med. 2011 Mar. 37(3):420-9. [QxMD MEDLINE Link].

  99. Briegel J, Forst H, Haller M. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med. 1999 Apr. 27(4):723-32. [QxMD MEDLINE Link].

  100. Annane D, Sébille V, Charpentier C, Bollaert PE, François B, Korach JM, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002 Aug 21. 288(7):862-71. [QxMD MEDLINE Link].

  101. Annane D, Bellissant E, Bollaert PE, Briegel J, Confalonieri M, De Gaudio R, et al. Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. JAMA. 2009 Jun 10. 301(22):2362-75. [QxMD MEDLINE Link].

  102. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008 Jan 10. 358(2):111-24. [QxMD MEDLINE Link].

  103. Moreno R, Sprung CL, Annane D, Chevret S, Briegel J, Keh D, et al. Time course of organ failure in patients with septic shock treated with hydrocortisone: results of the Corticus study. Intensive Care Med. 2011 Nov. 37(11):1765-72. [QxMD MEDLINE Link].

  104. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001 Nov 8. 345(19):1359-67. [QxMD MEDLINE Link].

  105. Arabi YM, Dabbagh OC, Tamim HM, Al-Shimemeri AA, Memish ZA, Haddad SH, et al. Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med. 2008 Dec. 36(12):3190-7. [QxMD MEDLINE Link].

  106. Preiser JC, Devos P, Ruiz-Santana S, Mélot C, Annane D, Groeneveld J, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009 Oct. 35(10):1738-48. [QxMD MEDLINE Link].

  107. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009 Mar 26. 360(13):1283-97. [QxMD MEDLINE Link].

  108. Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012 Sep 20. 367(12):1108-18. [QxMD MEDLINE Link].

  109. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008 Jan 10. 358(2):125-39. [QxMD MEDLINE Link].

  110. Kalfon P, Giraudeau B, Ichai C, Guerrini A, Brechot N, Cinotti R, et al. Tight computerized versus conventional glucose control in the ICU: a randomized controlled trial. Intensive Care Med. 2014 Feb. 40(2):171-81. [QxMD MEDLINE Link].

  111. Levi M, Toh CH, Thachil J, Watson HG. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol. 2009 Apr. 145(1):24-33. [QxMD MEDLINE Link].

  112. Meduri GU, Headley AS, Golden E, et al. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1998 Jul 8. 280(2):159-65. [QxMD MEDLINE Link].

  113. Nathens AB, Rotstein OD. Selective decontamination of the digestive tract in acute severe pancreatitis--an indication whose time has come. Clin Infect Dis. 1997 Oct. 25(4):817-8. [QxMD MEDLINE Link].

Author

Andre Kalil, MD, MPH Professor of Medicine, Department of Medicine, Section of Infectious Diseases, University of Nebraska College of Medicine; Director, Transplant ID Program, University of Nebraska Medical Center

Disclosure: Nothing to disclose.

Coauthor(s)

Chief Editor

Michael R Pinsky, MD, CM, Dr(HC), FCCP, FAPS, MCCM Professor of Critical Care Medicine, Bioengineering, Cardiovascular Disease, Clinical and Translational Science and Anesthesiology, Vice-Chair of Academic Affairs, Department of Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine

Michael R Pinsky, MD, CM, Dr(HC), FCCP, FAPS, MCCM is a member of the following medical societies: American College of Chest Physicians, American College of Critical Care Medicine, American Thoracic Society, European Society of Intensive Care Medicine, Society of Critical Care Medicine

Disclosure: Received income in an amount equal to or greater than $250 from: Baxter Medical, Exostat, LiDCO<br/>Received honoraria from LiDCO Ltd for consulting; Received intellectual property rights from iNTELOMED.

Acknowledgements

Fatima Al Faresi, MD Dermatologist, Tawam Hospital, Al Ain, UAE

Disclosure: Nothing to disclose.

Barry E Brenner, MD, PhD, FACEP Professor of Emergency Medicine, Professor of Internal Medicine, Program Director, Emergency Medicine, Case Medical Center, University Hospitals, Case Western Reserve University School of Medicine

Barry E Brenner, MD, PhD, FACEP is a member of the following medical societies: Alpha Omega Alpha, American Academy of Emergency Medicine, American College of Chest Physicians, American College of Emergency Physicians, American College of Physicians, American Heart Association, American Thoracic Society, Arkansas Medical Society, New York Academy of Medicine, New York Academy ofSciences,and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

John L Brusch, MD, FACP Assistant Professor of Medicine, Harvard Medical School; Consulting Staff, Department of Medicine and Infectious Disease Service, Cambridge Health Alliance

John L Brusch, MD, FACP is a member of the following medical societies: American College of Physicians and Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Ismail Cinel, MD, PhD Visiting Associate Professor, Division of Critical Care Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey

Disclosure: Nothing to disclose.

Clara-Dina Cokonis, MD Staff Physician, Department of Medicine, Division of Dermatology, Cooper Hospital University Medical Center

Disclosure: Nothing to disclose.

R Phillip Dellinger, MD Professor of Medicine, Program Director, Critical Care Medicine Fellowship Program, Robert Wood Johnson School of Medicine, University of Medicine and Dentistry of New Jersey; Head, Division of Critical Care Medicine, Medical Director, Medical/Surgical/Cardiovascular Surgical Intensive Care Unit, Cooper University Hospital

Disclosure: Wyeth Consulting fee Consulting; BRAHMS Grant/research funds Other Clinical Trial; Artisan Grant/research funds Other Clinical Trial; Agenix Grant/research funds Other Clinical Trial

Daniel J Dire, MD, FACEP, FAAP, FAAEM Clinical Professor, Department of Emergency Medicine, University of Texas Medical School at Houston; Clinical Professor, Department of Pediatrics, University of Texas Health Sciences Center San Antonio

Daniel J Dire, MD, FACEP, FAAP, FAAEM is a member of the following medical societies: American Academy of Clinical Toxicology, American Academy of Emergency Medicine, American Academy of Pediatrics, American College of Emergency Physicians, and Association of Military Surgeons of the US

Disclosure: Nothing to disclose.

Dirk M Elston, MD Director, Ackerman Academy of Dermatopathology, New York

Dirk M Elston, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

Michael R Filbin, MD Clinical Instructor, Department of Emergency Medicine, Massachusetts General Hospital

Michael R Filbin, MD is a member of the following medical societies: American College of Emergency Physicians, Massachusetts Medical Society, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Franklin Flowers, MD Chief, Division of Dermatology, Professor, Department of Medicine and Otolaryngology, Affiliate Associate Professor of Pediatrics and Pathology, University of Florida College of Medicine

Franklin Flowers, MD, is a member of the following medical societies: American College of Mohs Micrographic Surgery and Cutaneous Oncology

Disclosure: Nothing to disclose.

Cory Franklin, MD Professor, Department of Medicine, Rosalind Franklin University of Medicine and Science; Director, Division of Critical Care Medicine, Cook County Hospital

Cory Franklin, MD is a member of the following medical societies: New York Academy of Sciences and Society of Critical Care Medicine

Disclosure: Nothing to disclose.

Theodore J Gaeta, DO, MPH, FACEP Clinical Associate Professor, Department of Emergency Medicine, Weill Cornell Medical College; Vice Chairman and Program Director of Emergency Medicine Residency Program, Department of Emergency Medicine, New York Methodist Hospital; Academic Chair, Adjunct Professor, Department of Emergency Medicine, St George's University School of Medicine

Theodore J Gaeta, DO, MPH, FACEP is a member of the following medical societies: Alliance for Clinical Education, American College of Emergency Physicians, Clerkship Directors in Emergency Medicine, Council of Emergency Medicine Residency Directors, New York Academy of Medicine, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Hassan I Galadari, MD Assistant Professor of Dermatology, Faculty of Medicine and Health Sciences, United Arab Emirates University

Hassan I Galadari, MD is a member of the following medical societies: American Academy of Dermatology, American Medical Association, American Medical Student Association/Foundation, and American Society for Dermatologic Surgery

Disclosure: Nothing to disclose.

William D James, MD Paul R Gross Professor of Dermatology, Vice-Chairman, Residency Program Director, Department of Dermatology, University of Pennsylvania School of Medicine

William D James, MD is a member of the following medical societies: American Academy of Dermatology and Society for Investigative Dermatology

Disclosure: Elsevier Royalty Other

Paul Krusinski, MD Director of Dermatology, Fletcher Allen Health Care; Professor, Department of Internal Medicine, University of Vermont College of Medicine

Paul Krusinski, MD is a member of the following medical societies: American Academy of Dermatology, American College of Physicians, and Society for Investigative Dermatology

Disclosure: Nothing to disclose.

Steven M Manders, MD Clinical Assistant Professor, Department of Dermatology, University of Pennsylvania; Associate Professor, Department of Internal Medicine, Division of Dermatology, University of Medicine and Dentistry of New Jersey

Disclosure: Nothing to disclose.

Steven Mink, MD Head, Section of Pulmonary Medicine, Department of Internal Medicine, St Boniface Hospital; Professor of Medicine, University of Manitoba, Canada

Steven Mink, MD is a member of the following medical societies: Alpha Omega Alpha

Disclosure: Nothing to disclose.

Mark L Plaster, MD, JD Executive Editor, Emergency Physicians Monthly

Mark L Plaster, MD, JD is a member of the following medical societies: American Academy of Emergency Medicine and American College of Emergency Physicians

Disclosure: M L Plaster Publishing Co LLC Ownership interest Management position

Sat Sharma, MD, FRCPC Professor and Head, Division of Pulmonary Medicine, Department of Internal Medicine, University of Manitoba; Site Director, Respiratory Medicine, St Boniface General Hospital

Sat Sharma, MD, FRCPC is a member of the following medical societies: American Academy of Sleep Medicine, American College of Chest Physicians, American College of Physicians-American Society of Internal Medicine, American Thoracic Society, Canadian Medical Association, Royal College of Physicians and Surgeons of Canada, Royal Society of Medicine, Society of Critical Care Medicine, and World Medical Association

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Vicken Y Totten, MD, MS, FACEP, FAAFP Assistant Professor, Case Western Reserve University School of Medicine; Director of Research, Department of Emergency Medicine, University Hospitals, Case Medical Center

Vicken Y Totten, MD, MS, FACEP, FAAFP is a member of the following medical societies: American College of Emergency Physicians and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Richard P Vinson, MD Assistant Clinical Professor, Department of Dermatology, Texas Tech University Health Sciences Center, Paul L Foster School of Medicine; Consulting Staff, Mountain View Dermatology, PA

Richard P Vinson, MD is a member of the following medical societies: American Academy of Dermatology, Association of Military Dermatologists, Texas Dermatological Society, and Texas Medical Association

Disclosure: Nothing to disclose.

Eric L Weiss, MD, DTM&H Medical Director, Office of Service Continuity and Disaster Planning, Fellowship Director, Stanford University Medical Center Disaster Medicine Fellowship, Chairman, SUMC and LPCH Bioterrorism and Emergency Preparedness Task Force, Clinical Associate Progressor, Department of Surgery (Emergency Medicine), Stanford University Medical Center

Eric L Weiss, MD, DTM&H is a member of the following medical societies: American College of Emergency Physicians, American College of Occupational and Environmental Medicine, American Medical Association, American Society of Tropical Medicine and Hygiene, Physicians for Social Responsibility, Southeastern Surgical Congress, Southern Association for Oncology, Southern Clinical Neurological Society, and Wilderness Medical Society

Disclosure: Nothing to disclose.

What are the pathophysiological changes associated with septic shock?

Septic shock can lead to renal dysfunction, which can range from mild proteinuria to anuria and profound renal failure. Hypovolemia, renal vasoconstriction, hypotension, and nephrotoxic agents are the mechanisms by which acute kidney injury occurs.

Which physiological changes are seen in a patient with prolonged sepsis?

With sepsis, patients typically have fever, tachycardia, diaphoresis, and tachypnea; blood pressure remains normal. Other signs of the causative infection may be present. As sepsis worsens or septic shock develops, an early sign, particularly in older people or the very young, may be confusion or decreased alertness.

What is the physiological response to sepsis?

Sepsis results when an infectious insult triggers a localized inflammatory reaction that then spills over to cause systemic symptoms of fever or hypothermia, tachycardia, tachypnea, and either leukocytosis or leukopenia. These clinical symptoms are called the systemic inflammatory response syndrome.

Which of the following are the 3 effects of septic shock?

Complications of septic shock can include: inability of the lungs to take in enough oxygen (respiratory failure) the heart not being able to pump enough blood around the body (heart failure) kidney failure or injury.