Which of the following is the smallest biological structure that would be visible with a standard research grade light microscope?

1.Which of the following is the smallest biological structure thatwould most likely be visible with a standard research-grade lightmicroscope?a.Human cheek cellb. Chloroplastc. Microfilamentd. Ribosome

2.Which of the following microscopy technique is best suited forvisualizing internal detail of proteins in their cellular environmentswithout destroying the cell.

Which of the following is the smallest biological structure that would be visible with a standard research grade light microscope?

3.Which of the following statements best describes a majoradvantage of light microscopy over electron microscopy?

4.If homogenized cells are fractionated by differential centrifugation,which of the following organelles will require the greatestcentrifugation speed to form a pellet at the bottom of the tube?

5.Which of the following is the most appropriate technique forobserving the movements of condensed chromosomes during celldivision?a.Standard light microscopyb.Scanning electron microscopyc.Transmission electron microscopyd.A using a magnifying glass

6.Which of the following is the most appropriate technique forobserving and measuring the size of ribosomes in a eukaryoticcell?

7.Which of the following is the most appropriate technique forobserving the thee-dimensional structure and organization ofmicrovilli on an intestinal cell?

8.Which of the following statements best describes one majordifference between eukaryotic and prokaryotic cells?

  • Topics
  • Concepts
  • Citizen science
  • Teacher PLD
  • Glossary

  • Topics
  • Concepts
  • Citizen science
  • Teacher PLD
  • Glossary
  • Sign in

NOTIFICATIONS

From the universe itself down to the tiniest subatomic particle, objects in our world exist in a mind-boggling array of sizes. With microscopes, we can look directly at some of the objects and processes that are too small to be seen with the naked eye, and this has allowed us to make great leaps in our scientific understanding. However, there are many objects that are far too small to be seen even with microscopes.

Defining the microscopic scale

Within the scale of all things sits the microscopic scale, which can be thought of as the sizes of things that can be detected using microscopes.

Nature of Science

To make sense of the microscopic scale, scientists use the convention of ‘powers of 10’. In this system, even very small lengths are related back to the metre. For instance, a micrometre is expressed as 10-6 m. This nomenclature helps scientists to compare the sizes of the objects they see down the microscope and to communicate clearly with others about what they have seen.

Light microscopes let us look at objects as long as a millimetre (10-3 m) and as small as 0.2 micrometres (0.2 thousands of a millimetre or 2 x 10-7 m), whereas the most powerful electron microscopes allow us to see objects as small as an atom (about one ten-millionth of a millimetre or 1 angstrom or 10-10 m). So, we can think of the microscopic scale as being from a millimetre (10-3 m) to a ten-millionth of a millimetre (10-10 m).

Even within the microscopic scale, there are immense variations in the size of objects. After all, 10-3 m is 10 million times larger than 10-10 m – that’s a difference in scale equivalent to the size of Earth versus the size of a beach ball! It’s important to remember this when using a microscope – you need to know the magnification you’re using so that you can work out the actual size of the things you’re looking at.

Below the microscopic scale

Currently, the smallest thing that can be seen using a microscope is about the size of an atom. Anything smaller is below the current limit of resolution of the electron microscope, although the microscopic scale is likely to encompass even smaller objects as the technology of electron microscopes becomes more advanced. We know there are objects smaller than atoms, but they cannot be seen by microscopes. Scientists must turn to other tools to study these objects, including particle accelerators such as the Large Hadron Collider.

Cells are on the microscopic scale

Cells – the building blocks of life – exist on the microscopic scale. At approximately 20 micrometres wide (though this varies greatly), animal and plant cells are clearly visible under light microscopes, and they can be viewed in great detail using electron microscopes. Looking at cells under the microscope has made it possible to understand how they grow and divide, how they communicate with their environment and why they are the shapes they are. We now know a great deal about how cells work, and most of this would not have been possible without microscopes.

These two scientists study cells under the microscope. Dr Rebecca Campbell (University of Otago) studies brain cells (neurons) and how they fit together with one another. Because she is interested in whole neurons, she uses light microscopes (particularly the confocal laser scanning fluorescence microscope) to study them. Associate Professor Tony Poole (University of Otago) studies the primary cilium – a small antenna-like structure on the surface of each of our cells. Primary cilia are far smaller than cells (just 0.2 micrometres), so Tony uses an electron microscope to learn more about them.

Rocks at the microscopic scale

We often think of rocks as large objects, but they have many features that are on the microscopic scale. By looking at rocks under the microscope, scientists can learn a lot about how and when the rock was formed and what has happened to it since.

Professor Dave Prior at the University of Otago is especially interested in earthquakes and what causes them. He studies microscopic features of rocks from New Zealand’s Alpine Fault to help him understand how they have been ‘squished’ underground in the distant past. David uses both light microscopes and electron microscopes to explore rock microstructure.

This video clip (12 minutes duration) from Khan academy, explores the size relationship between objects on the microscopic scale (and beyond).

The Magnifying the universe interactive looks at the scale of the universe from the largest objects to the smallest. The visual encyclopedia of things from the observable universe to sub-atomic particles.

    Published 29 February 2012, Updated 23 July 2021 Referencing Hub articles

      Would you like to take a short survey?

      This survey will open in a new tab and you can fill it out after your visit to the site.

      What is the smallest biological structure that would be visible with a standard research grade light microscope?

      In practical terms, bacteria and mitochondria, which are about 500 nm (0.5 μm) wide, are generally the smallest objects whose shape can be clearly discerned in the light microscope; details smaller than this are obscured by effects resulting from the wave nature of light.

      Which of the following is the smallest biological structure?

      In biology, the smallest unit that can live on its own and that makes up all living organisms and the tissues of the body. A cell has three main parts: the cell membrane, the nucleus, and the cytoplasm.

      Which term is used to describe the smallest structure that can be seen by a light microscope quizlet?

      A cell is the basic unit of structure and function in all living things. They are Small membrane bound structures containing several smaller structures called organelles.

      Which one of the following cell structures can be seen with a light microscope?

      Organelles which can be seen under light microscope are nucleus, cytoplasm, cell membrane, chloroplasts and cell wall. Mitochondria are also visible under light microscope but detailed study is not possible.