A fiber-optic network maintenance plan should be developed with which of the following in mind?

Fully integrated and interoperable solutions for last-mile FTTx network activation, service installation, and performance optimization

Solutions from VIAVI are designed to support the most complex PON and FTTx networks for today and beyond, and help you achieve the best possible performance from networks and services. The combined precision, intelligence, and flexibility enable reliable fiber drops that are constructed correctly, and reduce associated costs of activation, installation and troubleshooting of FTTx/PON and WiFi services enabled by fiber.

What is FTTx? 

Fiber to the “x” (FTTx) is a collective term used to describe a wide range of broadband network architecture options utilizing optical fiber for some or all of their last mile connectivity. With “x” representing the fiber termination point, FTTx technology encompasses optical fiber deployments such as FTTH, FTTA, FTTB, and FTTC.

A fiber-optic network maintenance plan should be developed with which of the following in mind?

Fiber to the x is a central component of next-generation access (NGA), which characterizes the evolution of broadband infrastructure towards enhanced speed and quality of service (QoS). 

HDTV, virtual reality (VR) and other bandwidth-hungry applications already push the boundaries of this technology. The IoT, 5G, smart cities and blockchain technology are gaining traction rapidly as the high-speed, low-latency applications for FTTx continue to multiply.

With comprehensive FTTx products including versatile test and monitoring equipment and software, VIAVI has created an optimized tool kit for designing, building and maintaining the quality and reliability of FTTx networks.

FTTx Technology

FTTx networks bring the combined advantages of higher transmission rates and lower energy consumption. Moving optical fiber closer to the user allows the latest construction, connection and transmission techniques to be leveraged to their fullest extent and diminishes the bottleneck potential of conventional coax. To make this feasible, skillful planning and execution must propagate all lifecycle phases.

Network Design & Planning

The first step towards implementing this technology is well-coordinated design and planning. Prior to establishing the detailed FTTx network design, preliminary planning considerations include the quantity and location of users, fiber distribution and access points, as well as the architectural elements such as passive optical network (PON) technologies that will be included in the design. Detailed design elements at the “micro” level include splice locations, precise distribution patterns and loss budget calculations. Avoiding existing utilities and establishing equipment locations are some of the other considerations included in a comprehensive FTTx network design.

A fiber-optic network maintenance plan should be developed with which of the following in mind?

Deployment

Meticulous network planning is an essential requirement for a successful FTTx deployment. Timelines for cable splicing and splitter installation can be aggressive, so attention to detail, accurate labelling, efficient routing and prudent test practices are necessary to avoid delays.

Although most components are factory-tested, the verification of splices and terminations in the field remains one of the most important elements of FTTx deployment. Incorrect splicing, contaminated connectors or microbends can lead to optical loss and decreased QoS. A construction certification plan implemented with Test Process Automation can help to mitigate these risks.

A fiber-optic network maintenance plan should be developed with which of the following in mind?

Customer Connections and Installations

Service providers and contractors are under significant pressure to deploy fiber quickly and cost-effectively, while ensuring high quality, reliable installations. No test or limited test often looks like a good way to reduce deployment cost and time, however, it is proven that a lack of testing leads to activation delay, excessive troubleshooting, and loss of revenue. Proper testing during construction and installation phases is the only way to certify a FTTx link and provide a record of compliance to ensure successful first-time turn-up and reduce unnecessary truck rolls or repeats.

Monitoring & Maintenance

Ensuring performance once a successful deployment has been completed can only be accomplished through ongoing monitoring and maintenance. A single fiber link might connect an enterprise to thousands of customers and carry with it valuable and sensitive data.

Solutions like the VIAVI Optical Network Management System (ONMSi) can remotely detect and locate fiber degradation or faults quickly and accurately. Monitoring and measurement of FTTx networks can also improve security and performance by quickly detecting intrusions and establishing long-term fiber quality trending practices.

A fiber-optic network maintenance plan should be developed with which of the following in mind?

VIAVI Optical Network Management System

Downstream Wavelength of FTTx

For most FTTx applications, voice and data transmission from the OLT are produced at a downstream wavelength of 1490 nm. Wavelength division multiplexing (WDM) enables an upstream connection wavelength at 1310 nm so that bidirectional transmission can occur over the same fiber. Inexpensive laser optic technology can be utilized at the ONT (user) end. Newer and faster iterations of PON technology, such as NG-PON2 and XGS-PON, operate at slightly different downstream and upstream wavelengths. This allows multiple PON architecture types to be used simultaneously or interchangeably, depending on the service level requirements.

A fiber-optic network maintenance plan should be developed with which of the following in mind?

FTTx vs FTTH

While the acronyms are often used interchangeably, they are actually quite different. While the “x” factor of FTTx can be substituted for any termination point at or close to the subscriber or customer, FTTH has a more specific definition. Fiber to the home eliminates any residual coaxial or copper cable between service providers and the customer, creating a purely fiber optic connection to their home. Essentially, FTTH is a very important subset of FTTx.

The distinction and meaning of the word “home” in FTTH is also an important differentiator. This term is used to distinguish the direct fiber connection to a living space from other direct connections made to schools, businesses or individual offices. The quality and configuration of FTTx applications can be customized to suit the needs and expectations of the customers.

FTTx Applications

The various options encompassed under the FTTx umbrella each bring advantages and features that make them suitable for specific applications and less appropriate for others. The list of potential configurations is extensive with some becoming increasingly common FTTx architectural solutions.

FTTx Products

Throughout the planning, construction, activation and maintenance of FTTx networks, test solutions that can accurately verify and monitor key service quality indicators have proven to be invaluable. In addition to providing a powerful monitoring solution, the flexibility of ONMSi software can be utilized during planning and deployment to document fiber networks, manage network construction data and establish fiber optic test head locations.

Handheld fiber testing solutions designed for PON activation, maintenance and troubleshooting are another central requirement for deployment. The SmartPocketV2 OLP-37XV2 is a wavelength selective PON power meter for performing downstream optical power level measurements on PON services, while the SmartPocket V2 OLP-39 is a TruePON tester that adds PON-ID analysis for both G and XGS-PON services, both support co-existence of services on the same PON. The SmartClass Fiber OLP-87 supports simultaneous upstream and downstream power measurement for PON network activation, while the SmartClass Fiber OLP-88 TruePON tester adds PON-ID analysis to verify correct OLT port and drop terminal connection. The Optimeter optical fiber meter performs selective PON downstream optical power measurements plus certification and troubleshooting of the last mile FTTx fiber link in less than a minute. This versatile equipment also integrates fiber inspection and end-face certification capabilities.

A fiber-optic network maintenance plan should be developed with which of the following in mind?

OTDR is another effective FTTx test method. The VIAVI 4100-Series OTDR module is a valuable tool throughout all FTTx network deployment phases. OTDR technology enables detailed fiber testing and characterization integral to FTTx and PON network certification. The system also includes an integrated light source and power meter for added flexibility. The 4100-Series OTDR module is compatible with the complete suite of T-BERD/MTS solutions, which collectively establish an industry-leading platform for FTTx testing, certification and reporting.

The Future of FTTx

Increased cloud adoption, smart cities and the arrival of 5G are just a few of the obvious reasons why low-latency, high-bandwidth fiber networks have become the media of choice for both operators and consumers. FTTx provides the infrastructure through which all current communication modes can achieve ample capacity and consistent connectivity. Extending the reach of a fiber network provides the additional benefits of long-distance signal transmission, lightweight form factor and immunity to electromagnetic interference.

It is not surprising that FTTx network deployment is expected to accelerate continually over the next decade. With the “x” creating unbounded flexibility, there is no limit to potential FTTx options in the future. VIAVI will continue to provide the diverse equipment and technology that has made these possibilities a reality.

What is the best way to prevent problems in outside fiber optic splice enclosures?

What is the best way to prevent problems in outside fiber-optic splice enclosures? The outer jacket and the internal cable structures must be secured individually to protect the closure and splice trays from the effects of expansion and contraction.

What are the 3 basic components of an optic fiber system?

The three basic elements of a fiber optic cable are the core, the cladding and the coating. Core: This is the light transmission area of the fiber, either glass or plastic. The larger the core, the more light that will be transmitted into the fiber.
The different components that make up a fiber cable are the core, cladding, Kevlar®, ferrule, and connector. After assembly, the fiber core is polished and then it is ready to transmit data. The core is a continuous strand of super thin glass that is roughly the same size as a human hair.

Which of the following is true about fiber network restoration planning?

Which of the following is true regarding fiber-optic restoration? It requires preparation for dealing with factors that affect outage repair, including foul weather, darkness, electric utility failures, and the need to repair the system quickly.