Which of the following would most likely interfere with migration of neurons during development?

  • Goodman CS, Shatz CJ 1993 Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72: Suppl 77–98.

    PubMed  Article  Google Scholar 

  • Goodman CS 1996 Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19: 341–377.

    CAS  PubMed  Article  Google Scholar 

  • Catalano SM, Shatz CJ 1998 Activity-dependent cortical target selection by thalamic axons. Science 281: 559–562.

    CAS  PubMed  Article  Google Scholar 

  • Katz LC, Shatz CJ 1996 Synaptic activity and the construction of cortical circuits. Science 274: 1133–1138.

    CAS  PubMed  Article  Google Scholar 

  • Sarnat H 1992 Cerebral Dysgenesis: Embryology and Clinical Expression. Oxford University Press, New York.

    Google Scholar 

  • Berg BO 1996 Principles of Child Neurology. McGraw-Hill, New York.

  • Paidas MJ, Cohen A 1994 Disorders of the central nervous system. Semin Perinatol 18: 266–282.

    CAS  PubMed  Google Scholar 

  • Smith DJ, Stevens ME, Sudanagunta SP, Bronson RT, Makhinson M, Watabe AM, O'Dell TJ, Fung J, Weier HU, Cheng JF, Rubin EM 1997 Functional screening of 2 Mb of human chromosome 21q 22:2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet 16: 28–36.

    CAS  PubMed  Article  Google Scholar 

  • Tejedor F, Zhu XR, Kaltenbach E, Ackermann A, Baumann A, Canal I, Heisenberg M, Fischbach KF, Pongs O 1995 minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 14: 287–301.

    CAS  PubMed  Article  Google Scholar 

  • Burlet P, Béurglen L, Clermont O, Lefebvre S, Viollet L, Munnich A, Melki J 1996 Large scale deletions of the 5q13 region are specific to Werdnig-Hoffmann disease. J Med Genet 33: 281–283.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Iwahashi H, Eguchi Y, Yasuhara N, Hanafusa T, Matsuzawa Y, Tsujimoto Y 1997 Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy. Nature 390: 413–417.

    CAS  PubMed  Article  Google Scholar 

  • Morrison KE 1996 Advances in SMA research: review of gene deletions. Neuromuscul Disord 6: 397–408.

    CAS  PubMed  Article  Google Scholar 

  • Brunstrom JE, Gray-Swain MR, Osborne PA, Pearlman AL 1997 Neuronal heterotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18: 505–517.

    CAS  PubMed  Article  Google Scholar 

  • des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, Carriâe A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J 1998 A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92: 51–61.

    CAS  PubMed  Article  Google Scholar 

  • Luhmann HJ, Raabe K 1996 Characterization of neuronal migration disorders in neocortical structures: I. Expression of epileptiform activity in an animal model. Epilepsy Res 26: 67–74.

    CAS  PubMed  Article  Google Scholar 

  • Fransen E, Van Camp G, Vits L, Willems PJ 1997 L1-associated diseases: clinical geneticists divide, molecular geneticists unite. Hum Mol Genet 6: 1625–1632.

    CAS  PubMed  Article  Google Scholar 

  • Huttenlocher PR 1990 Morphometric study of human cerebral cortex development. Neuropsychologia 28: 517–527.

    CAS  PubMed  Article  Google Scholar 

  • Engel J 1989 Seizures and epilepsy. F.A. Davis Co, Philadelphia.

  • Schwartzkroin PA 1995 Plasticity and repair in the immature central nervous system. In: Schwartzkroin PA, Moshe SL, Noebels JL, Swann JW (eds) Brain Development and Epilepsy. Oxford University Press, New York, 234–267.

    Google Scholar 

  • Huttenlocher PR 1991 Dendritic and synaptic pathology in mental retardation. Pediatr Neurol 7: 79–85.

    CAS  PubMed  Article  Google Scholar 

  • Bauman ML, Filipek PA, Kemper TL 1997 Early infantile autism. Int Rev Neurobiol 41: 367–386.

    CAS  PubMed  Article  Google Scholar 

  • Shaywitz SE, Shaywitz BA, Pugh KR, Fulbright RK, Constable RT, Mencl WE, Shankweiler DP, Liberman AM, Skudlarski P, Fletcher JM, Katz L, Marchione KE, Lacadie C, Gatenby C, Gore JC 1998 Functional disruption in the organization of the brain for reading in dyslexia. Proc Natl Acad Sci USA 95: 2636–2641.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shatz CJ, Stryker MP 1988 Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242: 87–89.

    CAS  PubMed  Article  Google Scholar 

  • Sretavan DW, Shatz CJ, Stryker MP 1988 Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature 336: 468–471.

    CAS  PubMed  Article  Google Scholar 

  • Becker LE 1991 Synaptic dysgenesis. Can J Neurol Sci 18: 170–180.

    CAS  PubMed  Article  Google Scholar 

  • Pugh KR, Shaywitz BA, Shaywitz SE, Fulbright RK, Byrd D, Skudlarski P, Shankweiler DP, Katz L, Constable RT, Fletcher J, Lacadie C, Marchione K, Gore JC 1996 Auditory selective attention: an fMRI investigation. Neuroimage 4: 159–173.

    CAS  PubMed  Article  Google Scholar 

  • Heuppi PS, Barnes PD 1997 Magnetic resonance techniques in the evaluation of the newborn brain. Clin Perinatol 24: 693–723.

    Article  Google Scholar 

  • Heuppi PS, Schuknecht B, Boesch C, Bossi E, Felblinger J, Fusch C, Herschkowitz N 1996 Structural and neurobehavioral delay in postnatal brain development of preterm infants. Pediatr Res 39: 895–901.

    Article  Google Scholar 

  • Chugani HT, Phelps ME, Barnes D 1988 PET in normal and abnormal brain development. In: Swann JW, Messer A (eds) Disorders of the Developing Nervous System. Alan R. Liss, New York, 51–67.

    Google Scholar 

  • Henry TR 1996 Functional neuroimaging with positron emission tomography. Epilepsia 37: 1141–1154.

    CAS  PubMed  Article  Google Scholar 

  • Benaron DA, Contag PR, Contag CH 1997 Imaging brain structure and function, infection and gene expression in the body using light. Philos Trans R Soc Lond B Biol Sci 352: 755–761.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Adams C, Hwang PA, Gilday DL, Armstrong DC, Becker LE, Hoffman HJ 1992 Comparison of SPECT, EEG, CT, MRI, and pathology in partial epilepsy. Pediatr Neurol 8: 97–103.

    CAS  PubMed  Article  Google Scholar 

  • Lee CC, Jack Jr CR, Riederer SJ 1996 Use of functional magnetic resonance imaging. Neurosurg Clin North Am 7: 665–683.

    CAS  Article  Google Scholar 

  • Benaron DA, Stevenson DK 1994 Resolution of near infrared time-of-flight brain oxygenation imaging. Adv Exp Med Biol 345: 609–617.

    CAS  PubMed  Article  Google Scholar 

  • Sanderson KJ 1971 The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J Comp Neurol 143: 101–108.

    CAS  PubMed  Article  Google Scholar 

  • Zahs KR, Stryker MP 1985 The projection of the visual field onto the lateral geniculate nucleus of the ferret. J Comp Neurol 241: 210–224.

    CAS  PubMed  Article  Google Scholar 

  • Hubel DH, Wiesel TN 1977 Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198: 1–59.

    CAS  PubMed  Article  Google Scholar 

  • Bonhoeffer T, Kim DS, Malonek D, Shoham D, Grinvald A 1995 Optical imaging of the layout of functional domains in area 17 and across the area 17:18 border in cat visual cortex. Eur J Neurosci 7: 1973–1988.

    CAS  PubMed  Article  Google Scholar 

  • Chalupa LM, White CA 1990 Prenatal development of visual system structures. In: Coleman, JR (ed) Development of Sensory Systems in Mammals. Wiley & Sons, New York, 3–60.

    Google Scholar 

  • Rodieck RW 1979 Visual pathways. Annu Rev Neurosci 2: 193–255.

    CAS  PubMed  Article  Google Scholar 

  • Stein BE 1984 Development of the superior colliculus. Annu Rev Neurosci 7: 95–125.

    CAS  PubMed  Article  Google Scholar 

  • Shatz CJ 1983 The prenatal development of the cat's retinogeniculate pathway. J Neurosci 3: 482–499.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sretavan DW, Shatz CJ 1986 Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus. J Neurosci 6: 234–251.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Godement P, Salaun J, Imbert M 1984 Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J Comp Neurol 230: 552–575.

    CAS  PubMed  Article  Google Scholar 

  • Cucchiaro J, Guillery RW 1984 The development of the retinogeniculate pathways in normal and albino ferrets. Proc R Soc Lond B Biol Sci 223: 141–164.

    CAS  PubMed  Article  Google Scholar 

  • Rakic P 1976 Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261: 467–471.

    CAS  PubMed  Article  Google Scholar 

  • Rakic P 1977 Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons. J Comp Neurol 176: 23–52.

    CAS  PubMed  Article  Google Scholar 

  • Hubel DH, LeVay S, Wiesel TN 1975 Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain Res 96: 25–40.

    CAS  PubMed  Article  Google Scholar 

  • Nakamura H, O'Leary DD 1989 Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. J Neurosci 9: 3776–3795.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • O'Leary DD, Fawcett JW, Cowan WM 1986 Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death. J Neurosci 6: 3692–3705.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sretavan D, Shatz CJ 1984 Prenatal development of individual retinogeniculate axons during the period of segregation. Nature 308: 845–848.

    CAS  PubMed  Article  Google Scholar 

  • Shatz CJ, Kirkwood PA 1984 Prenatal development of functional connections in the cat's retinogeniculate pathway. J Neurosci 4: 1378–1397.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • LeVay S, Stryker MP, Shatz CJ 1978 Ocular dominance columns and their development in layer IV of the cat's visual cortex. J Comp Neurol 159: 223–244.

    Article  Google Scholar 

  • LeVay S, Wiesel TN, Hubel DH 1980 The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191: 1–51.

    CAS  PubMed  Article  Google Scholar 

  • Crair MC, Gillespie DC, Stryker MP 1998 The role of visual experience in the development of columns in cat visual cortex. Science 279: 566–570.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hubel DH, Wiesel TN 1965 Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28: 1041–1059.

    CAS  PubMed  Article  Google Scholar 

  • Hubel DH, Wiesel TN 1970 The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol (Lond) 28: 1041–1059.

    Google Scholar 

  • Hebb DO 1949 The Organization of Behavior. Wiley, New York

  • Blakemore C, Van Sluyters RC 1975 Innate and environmental factors in the development of the kitten's visual cortex. J Physiol (Lond) 248: 663–716.

    CAS  Article  PubMed Central  Google Scholar 

  • Antonini A, Stryker MP 1993 Rapid remodeling of axonal arbors in the visual cortex. Science 260: 1819–1821.

    CAS  PubMed  Article  Google Scholar 

  • Stryker MP, Strickland SL 1984 Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity. [Abstract] Invest Ophthalmol Vis Sci 25( Suppl): 278.

    Google Scholar 

  • Mower GD, Caplan CJ, Christen WG, Duffy FH 1985 Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. J Comp Neurol 235: 448–466.

    CAS  PubMed  Article  Google Scholar 

  • Mower GD, Christen WG 1985 Role of visual experience in activating critical period in cat visual cortex. J Neurophysiol 53: 572–589.

    CAS  PubMed  Article  Google Scholar 

  • Horton JC, Hocking DR 1996 An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci 16: 1791–1807.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mastronarde DN 1989 Correlated firing of retinal ganglion cells. Trends Neurosci 12: 75–80.

    CAS  PubMed  Article  Google Scholar 

  • Mastronarde DN 1983 Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J Neurophysiol 49: 303–324.

    CAS  PubMed  Article  Google Scholar 

  • Stryker MP, Harris WA 1986 Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J Neurosci 6: 2117–2133.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Weliky M, Katz LC 1997 Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386: 680–685.

    CAS  PubMed  Article  Google Scholar 

  • Katz LC, Constantine-Paton M 1988 Relationships between segregated afferents and postsynaptic neurones in the optic tectum of three-eyed frogs. J Neurosci 8: 3160–3180.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Constantine-Paton M, Ferrari-Eastman P 1987 Pre- and postsynaptic correlates of interocular competition and segregation in the frog. J Comp Neurol 255: 178–195.

    CAS  PubMed  Article  Google Scholar 

  • Reh TA, Constantine-Paton M 1985 Eye-specific segregation requires neural activity in the three eyed Rana pipiens. J Neurosci 4: 442–457.

    Article  Google Scholar 

  • Reh TA, Constantine-Paton M 1983 Qualitative and quantitative measures of plasticity during the normal development of the Rana pipiens retinotectal projection. Brain Res 312: 187–200.

    CAS  PubMed  Article  Google Scholar 

  • Schmidt JT, Eisele LE 1985 Stroboscopic illumination and dark rearing block the sharpening of the regenerated retinotectal map in goldfish. Neuroscience 14: 535–546.

    CAS  PubMed  Article  Google Scholar 

  • Brickley SG, Dawes EA, Keating MJ, Grant S 1998 Synchronizing retinal activity in both eyes disrupts binocular map development in the optic tectum. J Neurosci 18: 1491–1504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yuste R 1997 Introduction: spontaneous activity in the developing central nervous system. Semin Cell Dev Biol 8: 1–4.

    CAS  PubMed  Article  Google Scholar 

  • Daw NW 1995 Visual Development. Plenum Press, New York

    Chapter  Google Scholar 

  • Boothe RG, Dobson V, Teller DY 1985 Postnatal development of vision in human and nonhuman primates. Annu Rev Neurosci 8: 495–545.

    CAS  PubMed  Article  Google Scholar 

  • Huttenlocher PR, Dabholkar AS 1997 Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387: 167–178.

    CAS  PubMed  Article  Google Scholar 

  • Galli L, Maffei L 1988 Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242: 90–91.

    CAS  PubMed  Article  Google Scholar 

  • Maffei L, Galli-Resta L 1990 Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci USA 87: 2861–2864.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Meister M, Wong RO, Baylor DA, Shatz CJ 1991 Synchronous burst of action potentials in ganglion cells of the developing mammalian retina. Science 252: 939–943.

    CAS  PubMed  Article  Google Scholar 

  • Wong RO, Meister M, Shatz CJ 1993 Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11: 923–938.

    CAS  PubMed  Article  Google Scholar 

  • Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ 1996 Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272: 1182–1187.

    CAS  PubMed  Article  Google Scholar 

  • Mooney R, Penn AA, Gallego R, Shatz CJ 1996 Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17: 863–874.

    CAS  PubMed  Article  Google Scholar 

  • Wiesel TN, Hubel DH 1974 Ordered arrangement of orientation columns in monkeys lacking visual experience. J Comp Neurol 158: 307–318.

    CAS  PubMed  Article  Google Scholar 

  • Penn AA, Riquelme PA, Feller MB, Shatz CJ 1998 Competition in retinogeniculate patterning driven by spontaneous activity. Science 279: 2108–2112.

    CAS  PubMed  Article  Google Scholar 

  • Shatz CJ 1990 Competitive interactions between retinal ganglion cells during prenatal development. J Neurobiol 21: 197–211.

    CAS  PubMed  Article  Google Scholar 

  • Goodhill GJ, Lèowel S 1995 Theory meets experiment: correlated neural activity helps determine ocular dominance column periodicity. Trends Neurosci 18: 437–439.

    CAS  PubMed  Article  Google Scholar 

  • Feller MB, Butts DA, Aaron HL, Rokshar DS, Shatz CJ 1997 Dynamic properties shape spatiotemporal properties of retinal waves. Neuron 19: 293–306.

    CAS  PubMed  Article  Google Scholar 

  • Wong RO, Chernjavsky A, Smith SJ, Shatz CJ 1995 Early functional neural networks in the developing retina. Nature 374: 716–718.

    CAS  PubMed  Article  Google Scholar 

  • Greiner JV, Weidman TA 1981 Histogenesis of the ferret retina. Exp Eye Res 33: 315–332.

    CAS  PubMed  Article  Google Scholar 

  • Maslim J, Stone J 1986 synaptogenesis in the retina of the cat. Brain Res 373: 35–48.

    CAS  PubMed  Article  Google Scholar 

  • Wong ROL 1997 Patterns of correlated spontaneous bursting activity in the developing mammalian retina. Semin Cell Dev Biol 8: 5–12.

    CAS  PubMed  Article  Google Scholar 

  • Mooney R, Madison DV, Shatz CJ 1993 Enhancement of transmission at the developing retinogeniculate synapse. Neuron 10: 815–825.

    CAS  PubMed  Article  Google Scholar 

  • Sernagor E, Grzywacz NM 1996 Influence of spontaneous activity and visual experience on developing retinal receptive fields. Curr Biol 6: 1503–1508.

    CAS  PubMed  Article  Google Scholar 

  • Catsicas M, Bonness V, Becker D, Mobbs P 1998 Spontaneous Ca2+ transients and their transmission in the developing chick retina. Curr Biol 8: 283–286.

    CAS  PubMed  Article  Google Scholar 

  • Lippe WR 1995 Relationship between frequency of spontaneous bursting and tonotopic position in the developing avian auditory system. Brain Res 703: 205–213.

    CAS  PubMed  Article  Google Scholar 

  • Yuste R, Peinado A, Katz LC 1992 Neuronal domains in developing neocortex. Science 257: 665–669.

    CAS  PubMed  Article  Google Scholar 

  • Peinado A, Yuste R, Katz LC 1993 Gap junctional communication and the development of local circuits in neocortex. Cereb Cortex 3: 488–498.

    CAS  PubMed  Article  Google Scholar 

  • Kandler K, Katz LC 1998 Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication. J Neurosci 18: 1419–1427.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Peinado A, Yuste R, Katz LC 1993 Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10: 103–114.

    CAS  PubMed  Article  Google Scholar 

  • Kandler K 1997 Coordination of neuronal activity by gap junctions in the developing neocortex. Semin Cell Dev Biol 8: 43–51.

    CAS  PubMed  Article  Google Scholar 

  • Sernagor E, Chub N, Ritter A, O'Donovan MJ 1995 Pharmacological characterization of the rhythmic synaptic drive onto lumbosacral motoneurons in the chick embryo spinal cord. J Neurosci 15: 7452–7464.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Walton KD, Navarrete R 1991 Postnatal changes in motoneurone electronic coupling studied in the in vitro rat lumbar spinal cord. J Physiol (Lond) 433: 283–305.

    CAS  Article  Google Scholar 

  • Nguyen QT, Lichtman JW 1996 Mechanism of synapse disassembly at the developing neuromuscular junction. Curr Opin Neurobiol 6: 104–112.

    CAS  PubMed  Article  Google Scholar 

  • Dan Y, Lo LY, Poo MM 1995 Plasticity of developing neuromuscular synapses. Prog Brain Res 105: 211–215.

    CAS  PubMed  Article  Google Scholar 

  • Levin ED, Briggs SJ, Christopher NC, Rose JE 1993 Prenatal nicotine exposure and cognitive performance in rats. Neurotoxicol Teratol 15: 251–260.

    CAS  Article  PubMed  Google Scholar 

  • Sorenson CA, Raskin LA, Suh Y 1991 The effects of prenatal nicotine on radial-arm maze performance in rats. Pharmacol Biochem Behav 40: 991–993.

    CAS  PubMed  Article  Google Scholar 

  • Kopera-Frye K, Dehaene S, Streissguth AP 1996 Impairments of number processing induced by prenatal alcohol exposure. Neuropsychologia 34: 1187–1196.

    CAS  PubMed  Article  Google Scholar 

  • Olson HC, Streissguth AP, Sampson PD, Barr HM, Bookstein FL, Thiede K 1997 Association of prenatal alcohol exposure with behavioral and learning problems in early adolescence. J Am Acad Child Adolesc Psychiatry 36: 1187–1194.

    CAS  PubMed  Article  Google Scholar 

  • Sutherland RJ, McDonald RJ, Savage DD 1997 Prenatal exposure to moderate levels of ethanol can have long-lasting effects on hippocampal synaptic plasticity in adult offspring. Hippocampus 7: 232–238.

    CAS  PubMed  Article  Google Scholar 

  • Cutler AR, Wilkerson AE, Gingras JL, Levin ED 1996 Prenatal cocaine and/or nicotine exposure in rats: preliminary findings on long-term cognitive outcome and genital development at birth. Neurotoxicol Teratol 18: 635–643.

    CAS  PubMed  Article  Google Scholar 

  • Stryker MP, Sherk H, Leventhal AG, Hirsch HV 1978 Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours. J Neurophysiol 41: 896–909.

    CAS  PubMed  Article  Google Scholar 

  • Stryker MP, Sherk H 1975 Modification of cortical orientation in the cat by restricted visual experience: a reexamination. Science 190: 904–906.

    CAS  PubMed  Article  Google Scholar 

  • Fox K 1994 The cortical component of experience-dependent synaptic plasticity in the rat barrel cortex. J Neurosci 14: 7665–7679.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • King AJ 1993 The Wellcome Prize Lecture. A map of auditory space in the mammalian brain: neural computation and development. Exp Physiol 78: 559–590.

    CAS  PubMed  Article  Google Scholar 

  • Knudsen EI, Knudsen PF 1985 Vision guides the adjustment of auditory localization in young barn owls. Science 230: 545–548.

    CAS  PubMed  Article  Google Scholar 

  • Moon C, Cooper RP, Fifer WP 1993 Two-day-olds prefer their native language. Infant Behav Dev 16: 495–500.

    Article  Google Scholar 

  • McCormick DA, Trent F, Ramoa AS 1995 Postnatal development of synchronized network oscillations in the ferret dorsal lateral geniculate and perigeniculate nuclei. J Neurosci 15: 5739–5752.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kim U, Bal T, McCormick DA 1995 Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. J Neurophysiol 74: 1301–1323.

    CAS  PubMed  Article  Google Scholar 

  • McCormick DA, Bal T 1997 Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20: 185–215.

    CAS  PubMed  Article  Google Scholar 

  • Oguni H, Hayashi K, Osawa M 1996 Long-term prognosis of Lennox-Gastaut syndrome. Epilepsia 37: Suppl 3 44–47.

    PubMed  Article  Google Scholar 

  • Yagi K 1996 Evolution of Lennox-Gastaut syndrome: a long-term longitudinal study. Epilepsia 37: Suppl 3 48–51.

    PubMed  Article  Google Scholar 

  • Hall ZW, Sanes JR 1993 Synaptic structure and development: the neuromuscular junction. Cell 72: Suppl 99–121.

    PubMed  Article  Google Scholar 

  • Malenka RC 1994 Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78: 535–538.

    CAS  PubMed  Article  Google Scholar 

  • Bear MF, Abraham WC 1996 Long-term depression in hippocampus. Annu Rev Neurosci 19: 437–462.

    CAS  PubMed  Article  Google Scholar 

  • Lichtman JW, Balice-Gordon RJ 1990 Understanding synaptic competition in theory and in practice. J Neurobiol 21: 99–106.

    CAS  PubMed  Article  Google Scholar 

  • Kalb RG, Hockfield S 1992 Activity-dependent development of spinal motor cord neurons. Brain Res 17: 283–289.

    CAS  Article  Google Scholar 

  • Mendelson B 1994 Chronic embryonic MK-801 exposure disrupts the somatotopic organization of cutaneous nerve projections in the chick spinal cord. Brain Res 82: 152–166.

    CAS  Article  Google Scholar 

  • Balice-Gordon RJ, Lichtman JW 1994 Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372: 519–524.

    CAS  PubMed  Article  Google Scholar 

  • Balice-Gordon RJ, Chua CK, Nelson CC, Lichtman JW 1993 Gradual loss of synaptic cartels precedes axon withdrawal at developing neuromuscular junctions. Neuron 11: 801–815.

    CAS  PubMed  Article  Google Scholar 

  • Balice-Gordon RJ, Lichtman JW 1993 In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions. J Neurosci 13: 834–855.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lo LYJ, Poo MM 1991 Activity-dependent synaptic competition in vitro: heterosynaptic suppression of developing synapses. Science 254: 1019–1022.

    CAS  PubMed  Article  Google Scholar 

  • Lo LYJ, Poo MM 1994 Heterosynaptic suppression of developing neuromuscular synapses in culture. J Neurosci 14: 4684–4693.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Dan Y, Poo MM 1992 Hebbian depression of isolated neuromuscular synapses in vitro. Science 256: 1570–1573.

    CAS  PubMed  Article  Google Scholar 

  • Jennings C 1994 Developmental neurobiology. Death of a synapse [news; comment]. Nature 372: 498–499.

    CAS  PubMed  Article  Google Scholar 

  • Kirkwood A, Dudek SM, Gold JT, Aizenman CD, Bear MF 1993 Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science 260: 1518–1521.

    CAS  PubMed  Article  Google Scholar 

  • Bear MF 1996 Progress in understanding NMDA-receptor-dependent synaptic plasticity in the visual cortex. J Physiol Paris 90: 223–227.

    CAS  PubMed  Article  Google Scholar 

  • Mulkey RM, Malenka RC 1992 Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9: 967–975.

    CAS  PubMed  Article  Google Scholar 

  • Abraham WC 1996 Induction of heterosynaptic and homosynaptic LTD in hippocampal sub-regions in vivo. J Physiol Paris 90: 305–306.

    CAS  PubMed  Article  Google Scholar 

  • Schuman EM 1994 Molecular consequences of diffusible signaling: locally distributed synaptic enhancement in hippocampal neurons. Semin Cell Biol 5: 251–261.

    CAS  PubMed  Article  Google Scholar 

  • Crair MC, Malenka RC 1995 A critical period for long-term potentiation at thalamocortical synapses. Nature 375: 325–328.

    CAS  PubMed  Article  Google Scholar 

  • Artola A, Brèocher S, Singer W 1990 Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347: 69–72.

    CAS  PubMed  Article  Google Scholar 

  • Komatsu Y, Fujii K, Maeda J, Sakaguchi H, Toyama K 1988 Long-term potentiation of synaptic transmission in kitten visual cortex. J Neurophysiol 59: 124–141.

    CAS  PubMed  Article  Google Scholar 

  • Kirkwood A, Bear MF 1994 Hebbian synapses in visual cortex. J Neurosci 14: 1634–1645.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kirkwood A, Bear MF 1995 Elementary forms of synaptic plasticity in the visual cortex. Biol Res 28: 73–80.

    CAS  PubMed  Google Scholar 

  • Dudek SM, Friedlander MJ 1996 Developmental down-regulation of LTD in cortical layer IV and its independence of modulation by inhibition. Neuron 16: 1097–1106.

    CAS  PubMed  Article  Google Scholar 

  • Kirkwood A, Bear MF 1994 Homosynaptic long-term depression in the visual cortex. J Neurosci 14: 3404–3412.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kirkwood A, Lee HK, Bear MF 1995 Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375: 328–331.

    CAS  PubMed  Article  Google Scholar 

  • Bear MF, Malenka RC 1994 Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4: 389–399.

    CAS  PubMed  Article  Google Scholar 

  • Nicoll RA, Malenka RC 1995 Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377: 115–118.

    CAS  PubMed  Article  Google Scholar 

  • Seeburg PH, Burnashev N, Kèohr G, Kuner T, Sprengel R, Monyer H 1995 The NMDA receptor channel: molecular design of a coincidence detector. Receptor Prog Horm Res 50: 19–34.

    CAS  Google Scholar 

  • Abraham WC, Tate WP 1997 Metaplasticity: a new vista across the field of synaptic plasticity. Prog Neurobiol 52: 303–323.

    CAS  PubMed  Article  Google Scholar 

  • Bear MF 1995 Mechanism for a sliding synaptic modification threshold. Neuron 15: 1–4.

    CAS  PubMed  Article  Google Scholar 

  • Stanton PK 1996 LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus 6: 35–42.

    CAS  PubMed  Article  Google Scholar 

  • Hahm JO, Langdon RB, Sur M 1991 Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351: 568–570.

    CAS  PubMed  Article  Google Scholar 

  • Smetters DK, Hahm J, Sur M 1994 An N-methyl-D-aspartate receptor antagonist does not prevent eye-specific segregation in the ferret retinogeniculate pathway. Brain Res 658: 168–178.

    CAS  PubMed  Article  Google Scholar 

  • Miller KD, Chapman B, Stryker MP 1989 Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 86: 5183–5187.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cline HT, Debski EA, Constantine-Paton M 1987 N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. Proc Natl Acad Sci USA 84: 4342–4345.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ito M 1996 Cerebellar long-term depression [letter]. Trends Neurosci 19: 11–12.

    CAS  PubMed  Article  Google Scholar 

  • Itazawa SI, Isa T, Ozawa S 1997 Inwardly rectifying and Ca2+-permeable AMPA-type glutamate receptor channels in rat neocortical neurons. J Neurophysiol 78: 2592–2601.

    CAS  PubMed  Article  Google Scholar 

  • McDonald JW, Trescher WH, Johnston MV 1992 Susceptibility of brain to AMPA induced excitotoxicity transiently peaks during early postnatal development. Brain Res 583: 54–70.

    CAS  PubMed  Article  Google Scholar 

  • Ying HS, Weishaupt JH, Grabb M, Canzoniero LMT, Sensi SL, Sheline CT, Monyer H, Choi DW 1997 Sublethal oxygen-glucose deprivation alters hippocampal neuronal AMPA receptor expression and vulnerability to kainate-induced death. J Neurosci 17: 9536–9544.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wu WG, Malinow R, Cline HT 1996 Maturation of a central glutamatergic synapse. Science 274: 972–976.

    CAS  PubMed  Article  Google Scholar 

  • Feldman DE, Brainard MS, Knudsen EI 1996 Newly learned auditory responses mediated by NMDA receptors in the owl inferior colliculus. Science 271: 525–528.

    CAS  PubMed  Article  Google Scholar 

  • Isaac JT, Nicoll RA, Malenka RC 1995 Evidence for silent synapses: implications for the expression of LTP. Neuron 15: 427–434.

    CAS  PubMed  Article  Google Scholar 

  • Isaac JT, Crair MC, Nicoll RA, Malenka RC 1997 Silent synapses during development of thalamocortical inputs. Neuron 18: 269–280.

    CAS  PubMed  Article  Google Scholar 

  • Spitzer NC, Gu GX, Olson E 1994 Action potentials, calcium transients and the control of differentiation of excitable cells. Curr Opin Neurobiol 4: 70–77.

    CAS  PubMed  Article  Google Scholar 

  • Spitzer NC 1994 Development of voltage-dependent and ligand-gated channels in excitable membranes. Prog Brain Res 102: 169–179.

    CAS  PubMed  Article  Google Scholar 

  • Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY 1994 Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144–147.

    CAS  PubMed  Article  Google Scholar 

  • Washburn MS, Numberger M, Zhang S, Dingledine R 1997 Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J Neurosci 17: 9393–9406.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Choi DW, Rothman SM 1990 The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13: 171–182.

    CAS  Article  PubMed  Google Scholar 

  • Hattori H, Wasterlain CG 1990 Excitatory amino acids in the developing brain: ontogeny, plasticity, and excitotoxicity. Pediatr Neurol 6: 219–228.

    CAS  PubMed  Article  Google Scholar 

  • McDonald JW, Johnston MV 1993 Excitatory amino acid neurotoxicity in the developing brain. NIDA Res Monogr 133: 185–205.

    CAS  PubMed  Google Scholar 

  • McDonald JW, Johnston MV 1990 Nonketotic hyperglycinemia: pathophysiological role of NMDA-type excitatory amino acid receptors [letter]. Ann Neurol 27: 449–450.

    CAS  PubMed  Article  Google Scholar 

  • Lohof AM, Ip INY, Poo MM 1993 Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363: 350–353.

    CAS  PubMed  Article  Google Scholar 

  • Wang T, Xie Z, Lu B 1995 Nitric oxide mediates activity-dependent synaptic suppression at developing neuromuscular synapses. Nature 374: 262–266.

    CAS  PubMed  Article  Google Scholar 

  • Fu WM, Poo MM 1991 ATP potentiates spontaneous transmitter release at developing neuromuscular synapses. Neuron 6: 837–843.

    CAS  PubMed  Article  Google Scholar 

  • Liu Y, Fields RD, Fitzgerald S, Festoff BW, Nelson PG 1994 Proteolytic activity, synapse elimination, and the Hebb synapse. J Neurobiol 25: 325–335.

    CAS  PubMed  Article  Google Scholar 

  • Kantor DB, Lanzrein M, Stary SJ, Sandoval GM, Smith WB, Sullivan BM, Davidson N, Schuman EM 1996 A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue. Science 274: 1744–1748.

    CAS  PubMed  Article  Google Scholar 

  • Schuman EM, Madison DV 1991 A requirement for the intracellular messenger nitric oxide in long-term potentiation. Science 254: 1503–1506.

    CAS  PubMed  Article  Google Scholar 

  • Kang H, Schuman EM 1995 Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267: 1658–1662.

    CAS  PubMed  Article  Google Scholar 

  • Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T 1995 Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92: 8856–8860.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shatz CJ 1997 Neurotrophins and visual system plasticity. In: Cowan WM, Jessell TM, Zipursky L (eds) Molecular and Cellular Approaches to Neural Development. Oxford University Press, New York, 509–524.

    Google Scholar 

  • Riddle DR, McAllister AK, Lo DC, Katz LC 1996 Neurotrophins in cortical development. Cold Spring Harb Symp Quant Biol 61: 85–93.

    CAS  PubMed  Article  Google Scholar 

  • Allendoerfer KL, Cabelli RJ, Escandâon E, Kaplan DR, Nikolics K, Shatz CJ 1994 Regulation of neurotrophin receptors during the maturation of the mammalian visual system. J Neurosci 14: 1795–1811.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cabelli RJ, Allendoerfer KL, Radeke MJ, Welcher AA, Feinstein SC, Shatz CJ 1996 Changing patterns of expression and subcellular localization of TrkB in the developing visual system. J Neurosci 16: 7965–7980.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cabelli RJ, Hohn A, Shatz CJ 1995 Inhibition of ocular dominance column formation by infusion of NT- 4:5 or BDNF. Science 267: 1662–1666.

    CAS  PubMed  Article  Google Scholar 

  • Cabelli RJ, Shelton DL, Segal RA, Shatz CJ 1997 Blockade of endogenous ligands of TrkB inhibits formation of ocular dominance columns. Neuron 19: 63–76.

    CAS  PubMed  Article  Google Scholar 

  • Riddle DR, Lo DC, Katz LC 1995 NT-4-mediated rescue of lateral geniculate neurons from effects of monocular deprivation. Nature 378: 189–191.

    CAS  PubMed  Article  Google Scholar 

  • Li Y, Holtzman DM, Kromer LF, Kaplan DR, Chua-Couzens J, Clary DO, Kneusel B, Mobley WC 1995 Regulation of TrkA and ChAT expression in developing rat basal forebrain: evidence that both exogenous and endogenous NGF regulate differentiation of cholinergic neurons. J Neurosci 15: 2888–2905.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Williams CV, Nordquist D, McLoon SC 1994 Correlation of nitric oxide synthase expression with changing patterns of axonal projections in the developing visual system. J Neurosci 14: 1746–1755.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cramer KS, Angelucci A, Hahm JO, Bogdanov MB, Sur M 1996 A role for nitric oxide in the development of the ferret retinogeniculate projection. J Neurosci 16: 7995–8004.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cheng Y, Gidday JM, Yan Q, Shah AR, Holtzman DM 1997 Marked age-dependent neuroprotection by brain-derived neurotrophic factor against neonatal hypoxic-ischemic brain injury. Ann Neurol 41: 521–529.

    CAS  PubMed  Article  Google Scholar 

  • Parent JM, Lowenstein DH 1997 Mossy fiber reorganization in the epileptic hippocampus. Curr Opin Neurol 10: 103–109.

    CAS  PubMed  Article  Google Scholar 

  • Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT 1997 Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 94: 5401–5404.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Weiler IJ, Irwin SA, Klintsova AY, Spencer CM, Brazelton AD, Miyashiro K, Comery TA, Patel B, Eberwine J, Greenough WT 1997 Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci USA 94: 5395–5400.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fridell RA, Benson RE, Hua J, Bogerd HP, Cullen BR 1996 A nuclear role for the Fragile X mental retardation protein. EMBO J 15: 5408–5414.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhong N, Dobkin C, Brown WT 1993 A complex mutable polymorphism located within the fragile X gene. Nat Genet 5: 248–253.

    CAS  PubMed  Article  Google Scholar 

  • Tallal P, Miller SL, Bedi G, Byma G, Wang X, Nagarajan SS, Schreiner C, Jenkins WM, Merzenich MM 1996 Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 271: 81–84.

    CAS  PubMed  Article  Google Scholar 

  • Merzenich MM, Jenkins WM, Johnston P, Schreiner C, Miller SL, Tallal P 1996 Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271: 77–81.

    CAS  PubMed  Article  Google Scholar 

  • What happens if an immature neuron is transplanted to another area of the brain early in its development?

    What happens if an immature neuron is transplanted to another area of the brain early in its development? It takes on all the characteristics of neighboring neurons.

    What is one impediment to regeneration of axons in the mammalian central nervous system?

    Axon regeneration in the mature mammalian central nervous system (CNS) is extremely limited after injury. Consequently, functional deficits persist after spinal cord injury (SCI), traumatic brain injury, stroke, and related conditions that involve axonal disconnection.

    Why is it that all neurons in a healthy adult brain have made appropriate connections quizlet?

    Terms in this set (10) Why is it that all neurons in a healthy adult brain have made appropriate connections? If an axon does not make the appropriate connections by a certain age, it dies. The function of neurotrophins is to: promote survival of axons.

    Is the general term for chemicals that promote the growth and survival of neurons?

    Neurotrophins is a generic term that describes a number of neurotrophic factors enhancing neuronal differentiation, inducing proliferation, influencing synaptic functions, and promoting the survival of neurons that are normally destined to die during different phases of the development of the central and peripheral ...