Which of the following is not an application of communications satellite technology?

satellite communication, in telecommunications, the use of artificial satellites to provide communication links between various points on Earth. Satellite communications play a vital role in the global telecommunications system. Approximately 2,000 artificial satellites orbiting Earth relay analog and digital signals carrying voice, video, and data to and from one or many locations worldwide.

Satellite communication has two main components: the ground segment, which consists of fixed or mobile transmission, reception, and ancillary equipment, and the space segment, which primarily is the satellite itself. A typical satellite link involves the transmission or uplinking of a signal from an Earth station to a satellite. The satellite then receives and amplifies the signal and retransmits it back to Earth, where it is received and reamplified by Earth stations and terminals. Satellite receivers on the ground include direct-to-home (DTH) satellite equipment, mobile reception equipment in aircraft, satellite telephones, and handheld devices.

Advances in satellite technology have given rise to a healthy satellite services sector that provides various services to broadcasters, Internet service providers (ISPs), governments, the military, and other sectors. There are three types of communication services that satellites provide: telecommunications, broadcasting, and data communications. Telecommunication services include telephone calls and services provided to telephone companies, as well as wireless, mobile, and cellular network providers.

Broadcasting services include radio and television delivered directly to the consumer and mobile broadcasting services. DTH, or satellite television, services (such as the DirecTV and DISH Network services in the United States) are received directly by households. Cable and network programming is delivered to local stations and affiliates largely via satellite. Satellites also play an important role in delivering programming to cell phones and other mobile devices, such as personal digital assistants and laptops.

Data communications involve the transfer of data from one point to another. Corporations and organizations that require financial and other information to be exchanged between their various locations use satellites to facilitate the transfer of data through the use of very small-aperture terminal (VSAT) networks. With the growth of the Internet, a significant amount of Internet traffic goes through satellites, making ISPs one of the largest customers for satellite services.

Satellite communications technology is often used during natural disasters and emergencies when land-based communication services are down. Mobile satellite equipment can be deployed to disaster areas to provide emergency communication services.

Read More on This Topic

space exploration: Satellite telecommunications

Although some early space experiments explored the use of large orbiting satellites as passive reflectors of signals from point to point...

One major technical disadvantage of satellites, particularly those in geostationary orbit, is an inherent delay in transmission. While there are ways to compensate for this delay, it makes some applications that require real-time transmission and feedback, such as voice communications, not ideal for satellites.

Satellites face competition from other media such as fibre optics, cable, and other land-based delivery systems such as microwaves and even power lines. The main advantage of satellites is that they can distribute signals from one point to many locations. As such, satellite technology is ideal for “point-to-multipoint” communications such as broadcasting. Satellite communication does not require massive investments on the ground—making it ideal for underserved and isolated areas with dispersed populations.

Satellites and other delivery mechanisms such as fibre optics, cable, and other terrestrial networks are not mutually exclusive. A combination of various delivery mechanisms may be needed, which has given rise to various hybrid solutions where satellites can be one of the links in the chain in combination with other media. Ground service providers called “teleports” have the capability to receive and transmit signals from satellites and also provide connectivity with other terrestrial networks.

The future of satellite communication

In a relatively short span of time, satellite technology has developed from the experimental (Sputnik in 1957) to the sophisticated and powerful. Mega-constellations of thousands of satellites designed to bring Internet access to anywhere on Earth are in development. Future communication satellites will have more onboard processing capabilities, more power, and larger-aperture antennas that will enable satellites to handle more bandwidth. Further improvements in satellites’ propulsion and power systems will increase their service life to 20–30 years from the current 10–15 years. In addition, other technical innovations such as low-cost reusable launch vehicles are in development. With increasing video, voice, and data traffic requiring larger amounts of bandwidth, there is no dearth of emerging applications that will drive demand for the satellite services in the years to come. The demand for more bandwidth, coupled with the continuing innovation and development of satellite technology, will ensure the long-term viability of the commercial satellite industry well into the 21st century.

Virgil Labrador

Toplist

Neuester Beitrag

Stichworte