Which methods of immune stimulation may be administered to protect against rabies?

  • Plotkin SA. Vaccines: past, present and future. Nat Med. 2005;11:S5–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orenstein WA, Ahmed R. Simply put: vaccination saves lives. Proc Natl Acad Sci USA. 2017;114:4031–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Restifo NP, Ying H, Hwang L, Leitner WW. The promise of nucleic acid vaccines. Gene Ther. 2000;7:89–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet. 2008;9:776–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobernik D, Bros M. DNA vaccines-how far from clinical use? Int J Mol Sci. 2018;19:3605.

    PubMed Central  Google Scholar 

  • Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise. Nat Rev Drug Discov. 2020;19:441–2.

    CAS  PubMed  Google Scholar 

  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundstrom K. Self-replicating RNA viruses for RNA therapeutics. Molecules. 2018;23:3310.

    PubMed Central  Google Scholar 

  • Tews BA, Meyers G. Self-replicating RNA. Methods Mol Biol. 2017;1499:15–35.

    CAS  PubMed  Google Scholar 

  • Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C, et al. Rescue of measles viruses from cloned DNA. Embo J. 1995;14:5773–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther. 2020;28:709–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther. 2018;26:446–55.

    CAS  PubMed  Google Scholar 

  • Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines. 2020;5:11. https://doi.org/10.1038/s41541-020-0159-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA, et al. Rapidly produced SAM(®) vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect. 2013;2:e52.

    PubMed  PubMed Central  Google Scholar 

  • Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2024671.

  • Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2022483.

  • Beckert B, Masquida B. Synthesis of RNA by in vitro transcription. Methods Mol Biol. 2011;703:29–41.

    CAS  PubMed  Google Scholar 

  • Pardi N, Muramatsu H, Weissman D, Kariko K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol Biol. 2013;969:29–42.

    CAS  PubMed  Google Scholar 

  • Cao GJ, Sarkar N. Identification of the gene for an Escherichia coli poly(A) polymerase. Proc Natl Acad Sci USA. 1992;89:10380–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kääriäinen L, Ahola T. Functions of alphavirus nonstructural proteins in RNA replication. Prog Nucleic Acid Res Mol Biol. 2002;71:187–222.

    PubMed  PubMed Central  Google Scholar 

  • Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics. 2020;12:102.

    CAS  PubMed Central  Google Scholar 

  • Kariko K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16:1833–40.

    CAS  PubMed  Google Scholar 

  • Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada TN. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release. 2015;217:337–44.

    CAS  PubMed  Google Scholar 

  • Kauffman KJ, Mir FF, Jhunjhunwala S, Kaczmarek JC, Hurtado JE, Yang JH, et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials. 2016;109:78–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thess A, Grund S, Mui BL, Hope MJ, Baumhof P, Fotin-Mleczek M, et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther. 2015;23:1456–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019;27:757–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde JL, Chen R, Trobaugh DW, Diamond MS, Weaver SC, Klimstra WB, et al. The 5′ and 3′ ends of alphavirus RNAs—non-coding is not non-functional. Virus Res. 2015;206:99–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toribio R, Diaz-Lopez I, Boskovic J, Ventoso I. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation. Nucleic Acids Res. 2016;44:4368–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frolov I, Schlesinger S. Translation of Sindbis virus mRNA: analysis of sequences downstream of the initiating AUG codon that enhance translation. J Virol. 1996;70:1182–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde JL, Gardner CL, Kimura T, White JP, Liu G, Trobaugh DW, et al. A viral RNA structural element alters host recognition of nonself RNA. Science. 2014;343:783–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynaud JM, Kim DY, Atasheva S, Rasalouskaya A, White JP, Diamond MS, et al. IFIT1 differentially interferes with translation and replication of alphavirus genomes and promotes induction of type I interferon. PLoS Pathog. 2015;11:e1004863.

    PubMed  PubMed Central  Google Scholar 

  • Trobaugh DW, Gardner CL, Sun C, Haddow AD, Wang E, Chapnik E, et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature. 2014;506:245–8.

    CAS  PubMed  Google Scholar 

  • Li Y, Teague B, Zhang Y, Su Z, Porter E, Dobosh B, et al. In vitro evolution of enhanced RNA replicons for immunotherapy. Sci Rep. 2019;9:6932.

    PubMed  PubMed Central  Google Scholar 

  • Jemielity J, Fowler T, Zuberek J, Stepinski J, Lewdorowicz M, Niedzwiecka A, et al. Novel “anti-reverse” cap analogs with superior translational properties. Rna. 2003;9:1108–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, et al. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 2010;17:961–71.

    CAS  PubMed  Google Scholar 

  • Ensinger MJ, Martin SA, Paoletti E, Moss B. Modification of the 5′-terminus of mRNA by soluble guanylyl and methyl transferases from vaccinia virus. Proc Natl Acad Sci USA. 1975;72:2525–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shuman S. Catalytic activity of vaccinia mRNA capping enzyme subunits coexpressed in Escherichia coli. J Biol Chem. 1990;265:11960–6.

    CAS  PubMed  Google Scholar 

  • Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. 2010;468:452–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidyanathan S, Azizian KT, Haque A, Henderson JM, Hendel A, Shore S, et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol Ther Nucleic Acids. 2018;12:530–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m(6)Am in the 5′ cap controls mRNA stability. Nature. 2017;541:371–5.

    CAS  PubMed  Google Scholar 

  • McCaffrey AP. RNA epitranscriptome: role of the 5′ Cap. Genet Eng Biotechnol News. 2019;39:59–61.

    Google Scholar 

  • Wu MZ, Asahara H, Tzertzinis G, Roy B. Synthesis of low immunogenicity RNA with high-temperature in vitro transcription. Rna. 2020;26:345–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gholamalipour Y, Johnson WC, Martin CT. Efficient inhibition of RNA self-primed extension by addition of competing 3′-capture DNA-improved RNA synthesis by T7 RNA polymerase. Nucleic Acids Res. 2019;47:e118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39:e142.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beissert T, Koste L, Perkovic M, Walzer KC, Erbar S, Selmi A, et al. Improvement of in vivo expression of genes delivered by self-amplifying RNA using vaccinia virus immune evasion proteins. Hum Gene Ther. 2017;28:1138–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chin JM, Choo EL, Phua KKL. Messenger RNA translation enhancement by immune evasion proteins: a comparative study between EKB (vaccinia virus) and NS1 (influenza A virus). Sci Rep. 2019;9:11972.

    PubMed  PubMed Central  Google Scholar 

  • Yoshioka N, Gros E, Li HR, Kumar S, Deacon DC, Maron C, et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell. 2013;13:246–54.

    CAS  PubMed  Google Scholar 

  • Guan S, Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017;24:133–43.

    CAS  PubMed  Google Scholar 

  • Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27:710–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blakney AK, Zhu Y, McKay PF, Bouton CR, Yeow J, Tang J, et al. Big is beautiful: enhanced sarna delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer. ACS Nano. 2020;14:5711–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saviano F, Lovato T, Russo A, Russo G, Shattock RJ, Alexander C, et al. Ornithine-derived oligomers and dendrimers for in vitro delivery of DNA and ex vivo transfection of skin cells via saRNA. J Mater Chem B. 2020;8:4940–9.

    CAS  PubMed  Google Scholar 

  • Blakney AK, Abdouni Y, Yilmaz G, Liu R, McKay PF, Bouton CR, et al. Mannosylated poly(ethylene imine) copolymers enhance saRNA uptake and expression in human skin explants. Biomacromolecules. 2020;21:2482–92.

    CAS  PubMed  Google Scholar 

  • Yang DC, Eldredge AC, Hickey JC, Muradyan H, Guan Z. Multivalent peptide-functionalized bioreducible polymers for cellular delivery of various RNAs. Biomacromolecules. 2020;21:1613–24.

    CAS  PubMed  Google Scholar 

  • Goswami R, Chatzikleanthous D, Lou G, Giusti F, Bonci A, Taccone M, et al. Mannosylation of LNP results in improved potency for self-amplifying RNA (SAM) vaccines. ACS Infect Dis. 2019;5:1546–58.

    CAS  PubMed  Google Scholar 

  • Perche F, Clemencon R, Schulze K, Ebensen T, Guzman CA, Pichon C. Neutral lipopolyplexes for in vivo delivery of conventional and replicative RNA vaccine. Mol Ther Nucleic Acids. 2019;17:767–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferkol T, Perales JC, Mularo F, Hanson RW. Receptor-mediated gene transfer into macrophages. Proc Natl Acad Sci USA. 1996;93:101–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erbacher P, Bousser MT, Raimond J, Monsigny M, Midoux P, Roche AC. Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages. Hum Gene Ther. 1996;7:721–9.

    CAS  PubMed  Google Scholar 

  • Blakney AK, McKay PF, Yus BI, Aldon Y, Shattock RJ. Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther. 2019;26:363–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderluzzi G, Lou G, Gallorini S, Brazzoli M, Johnson R, O’Hagan DT, et al. Investigating the impact of delivery system design on the efficacy of self-amplifying RNA vaccines. Vaccines. 2020;8:212.

    CAS  PubMed Central  Google Scholar 

  • Spuul P, Balistreri G, Hellstrom K, Golubtsov AV, Jokitalo E, Ahola T. Assembly of alphavirus replication complexes from RNA and protein components in a novel trans-replication system in mammalian cells. J Virol. 2011;85:4739–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blakney AK, McKay PF, Shattock RJ. Structural components for amplification of positive and negative strand VEEV splitzicons. Front Mol Biosci. 2018;5:71.

    PubMed  PubMed Central  Google Scholar 

  • Beissert T, Perkovic M, Vogel A, Erbar S, Walzer KC, Hempel T, et al. A trans-amplifying RNA Vaccine strategy for induction of potent protective immunity. Mol Ther. 2020;28:119–28.

    CAS  PubMed  Google Scholar 

  • Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19:1597–608.

    CAS  PubMed  Google Scholar 

  • Carpentier KS, Morrison TE. Innate immune control of alphavirus infection. Curr Opin Virol. 2018;28:53–60.

    CAS  PubMed  Google Scholar 

  • Rauch S, Lutz J, Kowalczyk A, Schlake T, Heidenreich R. RNActive® technology: generation and testing of stable and immunogenic mRNA vaccines. Methods Mol Biol. 2017;1499:89–107.

    CAS  PubMed  Google Scholar 

  • Kallen KJ, Heidenreich R, Schnee M, Petsch B, Schlake T, Thess A, et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. Hum Vaccines Immunother. 2013;9:2263–76.

    CAS  Google Scholar 

  • Heidenreich R, Jasny E, Kowalczyk A, Lutz J, Probst J, Baumhof P, et al. A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int J Cancer. 2015;137:372–84.

    CAS  PubMed  Google Scholar 

  • Brito LA, Chan M, Shaw CA, Hekele A, Carsillo T, Schaefer M, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther. 2014;22:2118–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allison AG, Gregoriadis G. Liposomes as immunological adjuvants. Nature. 1974;252:252.

    CAS  PubMed  Google Scholar 

  • Perrie Y, Crofts F, Devitt A, Griffiths HR, Kastner E, Nadella V. Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev. 2016;99:85–96.

    CAS  PubMed  Google Scholar 

  • McCullough KC, Bassi I, Milona P, Suter R, Thomann-Harwood L, Englezou P, et al. Self-replicating replicon-RNA delivery to dendritic cells by chitosan-nanoparticles for translation in vitro and in vivo. Mol Ther Nucleic Acids. 2014;3:e173.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manara C, Brazzoli M, Piccioli D, Taccone M, D’Oro U, Maione D, et al. Co-administration of GM-CSF expressing RNA is a powerful tool to enhance potency of SAM-based vaccines. Vaccine. 2019;37:4204–13.

    CAS  PubMed  Google Scholar 

  • Blakney AK, McKay PF, Christensen D, Yus BI, Aldon Y, Follmann F, et al. Effects of cationic adjuvant formulation particle type, fluidity and immunomodulators on delivery and immunogenicity of saRNA. J Control Release. 2019;304:65–74.

    CAS  PubMed  Google Scholar 

  • Miao L, Li L, Huang Y, Delcassian D, Chahal J, Han J, et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat Biotechnol. 2019;37:1174–85.

    CAS  PubMed  Google Scholar 

  • Pollard C, Rejman J, De Haes W, Verrier B, Van Gulck E, Naessens T, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther. 2013;21:251–9.

    CAS  PubMed  Google Scholar 

  • Pepini T, Pulichino AM, Carsillo T, Carlson AL, Sari-Sarraf F, Ramsauer K, et al. Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J Immunol. 2017;198:4012–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med. 2007;13:552–9.

    CAS  PubMed  Google Scholar 

  • Huysmans H, Zhong Z, De Temmerman J, Mui BL, Tam YK, Mc Cafferty S, et al. Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin. Mol Ther Nucleic Acids. 2019;17:867–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Berglund P, Rhodes G, Parker SE, Jondal M, Liljestrom P. Self-replicating Semliki Forest virus RNA as recombinant vaccine. Vaccine. 1994;12:1510–4.

    CAS  PubMed  Google Scholar 

  • Fleeton MN, Chen M, Berglund P, Rhodes G, Parker SE, Murphy M, et al. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis. 2001;183:1395–8.

    CAS  PubMed  Google Scholar 

  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012;109:14604–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perri S, Greer CE, Thudium K, Doe B, Legg H, Liu H, et al. An alphavirus replicon particle chimera derived from venezuelan equine encephalitis and sindbis viruses is a potent gene-based vaccine delivery vector. J Virol. 2003;77:10394–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scorza FB, Pardi N. New kids on the block: RNA-based influenza virus vaccines. Vaccines. 2018;6:20.

    PubMed Central  Google Scholar 

  • Paules CI, Fauci AS. Influenza vaccines: good, but we can do better. J Infect Dis. 2019;219:S1–4.

    PubMed  PubMed Central  Google Scholar 

  • Magini D, Giovani C, Mangiavacchi S, Maccari S, Cecchi R, Ulmer JB, et al. Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge. PLoS ONE. 2016;11:e0161193.

    PubMed  PubMed Central  Google Scholar 

  • McKay PF, Hu K, Blakney AK, Samnuan K, Brown JC, Penn R, et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat Commun. 2020;11:3523.

    PubMed  PubMed Central  Google Scholar 

  • Scheuber A. Imperial social enterprise to accelerate low-cost COVID-19 vaccine. Imperial College London Health News. 2020. https://www.imperial.ac.uk/news/198053/imperial-social-enterprise-accelerate-lowcost-covid19/.

  • Samsa MM, Dupuy LC, Beard CW, Six CM, Schmaljohn CS, Mason PW, et al. Self-amplifying RNA vaccines for venezuelan equine encephalitis virus induce robust protective immunogenicity in mice. Mol Ther. 2019;27:850–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Z, Portela Catani JP, Mc Cafferty S, Couck L, Van Den Broeck W, Gorle N, et al. Immunogenicity and protection efficacy of a naked self-replicating mRNA-based zika virus vaccine. Vaccines. 2019;7:96.

  • Erasmus JH, Khandhar AP, Guderian J, Granger B, Archer J, Archer M, et al. A nanostructured lipid carrier for delivery of a replicating viral RNA provides single, low-dose protection against Zika. Mol Ther. 2018;26:2507–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chahal JS, Fang T, Woodham AW, Khan OF, Ling J, Anderson DG, et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci Rep. 2017;7:252.

    PubMed  PubMed Central  Google Scholar 

  • Stokes A, Pion J, Binazon O, Laffont B, Bigras M, Dubois G, et al. Nonclinical safety assessment of repeated administration and biodistribution of a novel rabies self-amplifying mRNA vaccine in rats. Regul Toxicol Pharmacol. 2020;113:104648.

    CAS  PubMed  Google Scholar 

  • Armbruster N, Jasny E, Petsch B. Advances in RNA vaccines for preventive indications: a case study of a vaccine against rabies. Vaccines. 2019;7:132.

    CAS  PubMed Central  Google Scholar 

  • Esparza J. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine. 2013;31:3502–18.

    PubMed  Google Scholar 

  • Kwong PD, Mascola JR. HIV-1 vaccines based on antibody identification, b cell ontogeny, and epitope structure. Immunity. 2018;48:855–71.

    CAS  PubMed  Google Scholar 

  • Moore PL. The neutralizing antibody response to the HIV-1 Env protein. Curr HIV Res. 2018;16:21–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones LD, Moody MA, Thompson AB. Innovations in HIV-1 vaccine design. Clin Ther. 2020;42:499–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sok D, Burton DR. Recent progress in broadly neutralizing antibodies to HIV. Nat Immunol. 2018;19:1179–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padte NN, Yu J, Huang Y, Ho DD. Engineering multi-specific antibodies against HIV-1. Retrovirology. 2018;15:60.

    PubMed  PubMed Central  Google Scholar 

  • Tremouillaux-Guiller J, Moustafa K, Hefferon K, Gaobotse G, Makhzoum A. Plant-made HIV vaccines and potential candidates. Curr Opin Biotechnol. 2020;61:209–16.

    CAS  PubMed  Google Scholar 

  • Gardner MR, Farzan M. Engineering antibody-like inhibitors to prevent and treat HIV-1 infection. Curr Opin HIV AIDS. 2017;12:294–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korber B, Hraber P, Wagh K, Hahn BH. Polyvalent vaccine approaches to combat HIV-1 diversity. Immunol Rev. 2017;275:230–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin A, Balazs AB. Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology. 2018;15:66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis NL, Caley IJ, Brown KW, Betts MR, Irlbeck DM, McGrath KM, et al. Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J Virol. 2000;74:371–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston RE, Johnson PR, Connell MJ, Montefiori DC, West A, Collier ML, et al. Vaccination of macaques with SIV immunogens delivered by Venezuelan equine encephalitis virus replicon particle vectors followed by a mucosal challenge with SIVsmE660. Vaccine. 2005;23:4969–79.

    CAS  PubMed  Google Scholar 

  • Mossman SP, Bex F, Berglund P, Arthos J, O’Neil SP, Riley D, et al. Protection against lethal simian immunodeficiency virus SIVsmmPBj14 disease by a recombinant Semliki Forest virus gp160 vaccine and by a gp120 subunit vaccine. J Virol. 1996;70:1953–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perri S, Greer CE, Thudium K, Doe B, Legg H, Liu H, et al. An alphavirus replicon particle chimera derived from venezuelan equine encephalitis and sindbis viruses is a potent gene-based vaccine delivery vector. J Virol. 2003;77:10394–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardi N, Secreto AJ, Shan X, Debonera F, Glover J, Yi Y, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630.

    PubMed  PubMed Central  Google Scholar 

  • Pardi N, Hogan MJ, Naradikian MS, Parkhouse K, Cain DW, Jones L, et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med. 2018;215:1571–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardi N, LaBranche CC, Ferrari G, Cain DW, Tombacz I, Parks RJ, et al. Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques. Mol Ther Nucleic Acids. 2019;15:36–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allard SD, De Keersmaecker B, de Goede AL, Verschuren EJ, Koetsveld J, Reedijk ML, et al. A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol. 2012;142:252–68.

    CAS  PubMed  Google Scholar 

  • Gandhi RT, Kwon DS, Macklin EA, Shopis JR, McLean AP, McBrine N, et al. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef: results of a randomized, placebo-controlled clinical trial. J Acquir Immune Defic Syndr. 2016;71:246–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gay CL, DeBenedette MA, Tcherepanova IY, Gamble A, Lewis WE, Cope AB, et al. Immunogenicity of AGS-004 dendritic cell therapy in patients treated during acute HIV infection. AIDS Res Hum Retrovir. 2018;34:111–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson JM, Routy JP, Welles S, DeBenedette M, Tcherepanova I, Angel JB, et al. Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: a randomized, double-blind, placebo-controlled clinical trial. J Acquir Immune Defic Syndr. 2016;72:31–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Routy JP, Boulassel MR, Yassine-Diab B, Nicolette C, Healey D, Jain R, et al. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol. 2010;134:140–7.

    CAS  PubMed  Google Scholar 

  • Van Gulck E, Vlieghe E, Vekemans M, Van Tendeloo VF, Van De Velde A, Smits E, et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS. 2012;26:F1–12.

    PubMed  Google Scholar 

  • Gay CL, Kuruc JD, Falcinelli SD, Warren JA, Reifeis SA, Kirchherr JL, et al. Assessing the impact of AGS-004, a dendritic cell-based immunotherapy, and vorinostat on persistent HIV-1 Infection. Sci Rep. 2020;10:5134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong W, Leal L, Buyze J, Pannus P, Guardo A, Salgado M, et al. Therapeutic vaccine in chronically HIV-1-infected patients: a randomized, double-blind, placebo-controlled phase IIa trial with HTI-TriMix. Vaccines. 2019;7:209.

    PubMed Central  Google Scholar 

  • Leal L, Guardo AC, Moron-Lopez S, Salgado M, Mothe B, Heirman C, et al. Phase I clinical trial of an intranodally administered mRNA-based therapeutic vaccine against HIV-1 infection. AIDS. 2018;32:2533–45.

    CAS  PubMed  Google Scholar 

  • Melo M, Porter E, Zhang Y, Silva M, Li N, Dobosh B, et al. Immunogenicity of RNA replicons encoding HIV Env immunogens designed for self-assembly into nanoparticles. Mol Ther. 2019;27:2080–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bogers WM, Oostermeijer H, Mooij P, Koopman G, Verschoor EJ, Davis D, et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis. 2015;211:947–55.

    CAS  PubMed  Google Scholar 

  • Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med. 2012;366:1275–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moyo N, Vogel AB, Buus S, Erbar S, Wee EG, Sahin U, et al. Efficient Induction of T cells against conserved HIV-1 regions by mosaic vaccines delivered as self-amplifying mRNA. Mol Ther Methods Clin Dev. 2019;12:32–46.

    CAS  PubMed  Google Scholar 

  • Kollmann TR. Variation between populations in the innate immune response to vaccine adjuvants. Front Immunol. 2013;4:81.

    PubMed  PubMed Central  Google Scholar 

  • Brazzoli M, Magini D, Bonci A, Buccato S, Giovani C, Kratzer R, et al. Induction of broad-based immunity and protective efficacy by self-amplifying mRNA vaccines encoding influenza virus hemagglutinin. J Virol. 2016;90:332–44.

    CAS  PubMed  Google Scholar 

  • Lazzaro S, Giovani C, Mangiavacchi S, Magini D, Maione D, Baudner B, et al. CD8 T-cell priming upon mRNA vaccination is restricted to bone-marrow-derived antigen-presenting cells and may involve antigen transfer from myocytes. Immunology. 2015;146:312–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chahal JS, Khan OF, Cooper CL, McPartlan JS, Tsosie JK, Tilley LD, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci USA. 2016;113:E4133–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demoulins T, Ebensen T, Schulze K, Englezou PC, Pelliccia M, Guzman CA, et al. Self-replicating RNA vaccine functionality modulated by fine-tuning of polyplex delivery vehicle structure. J Control Release. 2017;266:256–71.

    CAS  PubMed  Google Scholar 

  • Englezou PC, Sapet C, Demoulins T, Milona P, Ebensen T, Schulze K, et al. Self-amplifying replicon RNA delivery to dendritic cells by cationic lipids. Mol Ther Nucleic Acids. 2018;12:118–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kofler RM, Aberle JH, Aberle SW, Allison SL, Heinz FX, Mandl CW. Mimicking live flavivirus immunization with a noninfectious RNA vaccine. Proc Natl Acad Sci USA. 2004;101:1951–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aberle JH, Aberle SW, Kofler RM, Mandl CW. Humoral and cellular immune response to RNA immunization with flavivirus replicons derived from tick-borne encephalitis virus. J Virol. 2005;79:15107–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cu Y, Broderick KE, Banerjee K, Hickman J, Otten G, Barnett S, et al. Enhanced delivery and potency of self-amplifying mRNA vaccines by electroporation in situ. Vaccines. 2013;1:367–83.

    PubMed  PubMed Central  Google Scholar 

  • Luo F, Zheng L, Hu Y, Liu S, Wang Y, Xiong Z, et al. Induction of protective immunity against toxoplasma gondii in mice by nucleoside triphosphate hydrolase-II (NTPase-II) self-amplifying RNA vaccine encapsulated in lipid nanoparticle (LNP). Front Microbiol. 2017;8:605.

    PubMed  PubMed Central  Google Scholar 

  • Maruggi G, Chiarot E, Giovani C, Buccato S, Bonacci S, Frigimelica E, et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine. 2017;35:361–8.

    CAS  PubMed  Google Scholar 

  • Which method of immune stimulation is administered to protect against rabies?

    Vaccination (using an inactivated rabies vaccine), combined with administration of rabies immune globulin, is the only approved, effective method for post-exposure prophylaxis against rabies in humans.

    What are the methods of prevention of rabies?

    Tips to Prevent Rabies.
    Vaccinate dogs and cats against rabies as required by law. ... .
    Keep dogs and cats under control. ... .
    Leave stray or unknown dogs and cats alone. ... .
    Leave wild animals alone. ... .
    Do not keep wild animals as pets. ... .
    Make your property unattractive to wild animals..

    What is the best treatment for a possible rabies exposure?

    What medical care will I receive if I may have been exposed to rabies? Postexposure prophylaxis (PEP) consists of a dose of human rabies immune globulin (HRIG) and rabies vaccine given on the day of the rabies exposure, and then a dose of vaccine given again on days 3, 7, and 14.

    Which of the following is used for prevention and control of rabies?

    Post-exposure prophylaxis (PEP) consists of a series of rabies vaccines and, in some cases, rabies immunoglobulin (RIG), administered after a suspected exposure to rabies. Appropriate wound management and prompt access to quality-assured PEP is almost 100% effective in preventing human rabies deaths.