What happens during the first step in the signal transduction pathway involving camp?

1. Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem. 2007;76:481–511. doi: 10.1146/annurev.biochem.76.060305.150444. [PubMed] [CrossRef] [Google Scholar]

2. Brown KM, Lee LC, Findlay JE, Day JP, Baillie GS. Cyclic AMP-specific phosphodiesterase, PDE8A1, is activated by protein kinase A-mediated phosphorylation. FEBS Lett. 2012;586:1631–1637. doi: 10.1016/j.febslet.2012.04.033. [PubMed] [CrossRef] [Google Scholar]

3. Diaz-Muñoz MD, Osma-García IC, Fresno M, Iñiguez MA. Involvement of PGE2 and the cAMP signalling pathway in the up-regulation of COX-2 and mPGES-1 expression in LPS-activated macrophages. Biochem J. 2012;443:451–461. doi: 10.1042/BJ20111052. [PubMed] [CrossRef] [Google Scholar]

4. Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev. 2003;17:1575–1580. doi: 10.1101/gad.1097103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Beshay E, Croze F, Prud'homme GJ. The phosphodiesterase inhibitors pentoxifylline and rolipram suppress macrophage activation and nitric oxide production in vitro and in vivo. Clin Immunol. 2001;98:272–279. doi: 10.1006/clim.2000.4964. [PubMed] [CrossRef] [Google Scholar]

6. Park PH, Huang H, McMullen MR, Bryan K, Nagy LE. Activation of cyclic-AMP response element binding protein contributes to adiponectin-stimulated interleukin-10 expression in RAW 264.7 macrophages. J Leukoc Biol. 2008;83:1258–1266. doi: 10.1189/jlb.0907631. [PubMed] [CrossRef] [Google Scholar]

7. Chang SY, Kim DB, Ryu GR, Ko SH, Jeong IK, Ahn YB, Jo YH, Kim MJ. Exendin-4 inhibits iNOS expression at the protein level in LPS-stimulated Raw264.7 macrophage by the activation of cAMP/PKA pathway. J Cell Biochem. 2013;114:844–853. doi: 10.1002/jcb.24425. [PubMed] [CrossRef] [Google Scholar]

8. Rosethorne EM, Nahorski SR, Challiss RA. Regulation of cyclic AMP response-element binding-protein (CREB) by Gq/11-protein-coupled receptors in human SH-SY5Y neuro-blastoma cells. Biochem Pharmacol. 2008;75:942–955. doi: 10.1016/j.bcp.2007.10.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Burdyga A, Conant A, Haynes L, Zhang J, Jalink K, Sutton R, Neoptolemos J, Costello E, Tepikin A. cAMP inhibits migration, ruffling and paxillin accumulation in focal adhesions of pancreatic ductal adenocarcinoma cells: Effects of PKA and EPAC. Biochim Biophys Acta. 18332013:2664–2672. [PMC free article] [PubMed] [Google Scholar]

10. Menniti FS, Faraci WS, Schmidt CJ. Phosphodiesterases in the CNS: Targets for drug development. Nat Rev Drug Discov. 2006;5:660–670. doi: 10.1038/nrd2058. [PubMed] [CrossRef] [Google Scholar]

11. Jang IS, Kang UG, Kim YS, Ahn YM, Park JB, Juhnn YS. Isoform-specific changes of adenylate cyclase mRNA expression in rat brains following chronic electroconvulsive shock. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:1571–1581. doi: 10.1016/S0278-5846(01)00207-X. [PubMed] [CrossRef] [Google Scholar]

12. Gloerich M, Bos JL. Epac: Defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 2010;50:355–375. doi: 10.1146/annurev.pharmtox.010909.105714. [PubMed] [CrossRef] [Google Scholar]

13. Nakajima T, Uchida C, Anderson SF, Parvin JD, Montminy M. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 1997;11:738–747. doi: 10.1101/gad.11.6.738. [PubMed] [CrossRef] [Google Scholar]

14. Maurice DH, Palmer D, Tilley DG, Dunkerley HA, Netherton SJ, Raymond DR, Elbatarny HS, Jimmo SL. Cyclic nucleotide phosphodiesterase activity, expression and targeting in cells of the cardiovascular system. Mol Pharmacol. 2003;64:533–546. doi: 10.1124/mol.64.3.533. [PubMed] [CrossRef] [Google Scholar]

15. McLean JH, Smith A, Rogers S, Clarke K, Darby-King A, Harley CW. A phosphodiesterase inhibitor, cilomilast, enhances cAMP activity to restore conditioned odor preference memory after serotonergic depletion in the neonate rat. Neurobiol Learn Mem. 2009;92:63–69. doi: 10.1016/j.nlm.2009.02.003. [PubMed] [CrossRef] [Google Scholar]

16. Jackson EK, Dubey RK. Role of the extracellular cAMP-adenosine pathway in renal physiology. Am J Physiol Renal Physiol. 2001;281:F597–F612. [PubMed] [Google Scholar]

17. Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev. 2005;85:1303–1342. doi: 10.1152/physrev.00001.2005. [PubMed] [CrossRef] [Google Scholar]

18. Richards JS. New Signaling pathways for hormones and cyclic adenosine 3′,5′-monophosphate action in endocrine cells. Mol Endocrinol. 2001;15:209–218. [PubMed] [Google Scholar]

19. Guseva D, Wirth A, Ponimaskin E. Cellular mechanisms of the 5-HT7 receptor-mediated signaling. Front Behav Neurosci. 2014;8:306. doi: 10.3389/fnbeh.2014.00306. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron. 1996;16:1137–1145. doi: 10.1016/S0896-6273(00)80140-3. [PubMed] [CrossRef] [Google Scholar]

21. Metz R, Ziff E. cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to translocate to the nucleus and induce c-fos transcription. Genes Dev. 1991;5:1754–1766. doi: 10.1101/gad.5.10.1754. [PubMed] [CrossRef] [Google Scholar]

22. Barad M, Bourtchouladze R, Winder DG, Golan H, Kandel E. Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc Natl Acad Sci USA. 1998;95:15020–15025. doi: 10.1073/pnas.95.25.15020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Chen CC, Chiu KT, Sun YT, Chen WC. Role of the cyclic AMP-protein kinase a pathway in lipopolysaccharide-induced nitric oxide synthase expression in RAW 264.7 macrophages. J Biol Chem. 1999;274:31559–331564. doi: 10.1074/jbc.274.44.31559. [PubMed] [CrossRef] [Google Scholar]

24. Moon EY, Lee JH, Lee JW, Song JH, Pyo S. ROS/Epac1-mediated Rap1/NF-kappaB activation is required for the expression of BAFF in Raw264.7 murine macrophages. Cell Signal. 2011;23:1479–1488. doi: 10.1016/j.cellsig.2011.05.001. [PubMed] [CrossRef] [Google Scholar]

25. DiPilato LM, Cheng X, Zhang J. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci USA. 2004;101:16513–16518. doi: 10.1073/pnas.0405973101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Avni D, Ernst O, Philosoph A, Zor T. Role of CREB in modulation of TNFalpha and IL-10 expression in LPS-stimulated RAW264.7 macrophages. Mol Immunol. 2010;47:1396–1403. doi: 10.1016/j.molimm.2010.02.015. [PubMed] [CrossRef] [Google Scholar]

27. Horton JK, Baxendale PM. Mass measurements of cyclic AMP formation by radioimmunoassay, enzyme immunoassay and scintillation proximity assay. Methods Mol Biol. 1995;41:91–105. [PubMed] [Google Scholar]

28. Costanzo V, Robertson K, Ying CY, Kim E, Avvedimento E, Gottesman M, Grieco D, Gautier J. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol Cell. 2000;6:649–659. doi: 10.1016/S1097-2765(00)00063-0. [PubMed] [CrossRef] [Google Scholar]

29. Costanzo V, Avvedimento EV, Gottesman ME, Gautier J, Grieco D. Protein kinase A is required for chromosomal DNA replication. Curr Biol. 1999;9:903–906. doi: 10.1016/S0960-9822(99)80395-9. [PubMed] [CrossRef] [Google Scholar]

30. Smith A, Ward MP, Garrett S. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 1998;17:3556–3564. doi: 10.1093/emboj/17.13.3556. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Liu F, Verin AD, Borbiev T, Garcia JG. Role of cAMP-dependent protein kinase A activity in endothelial cell cytoskeleton rearrangement. Am J Physiol Lung Cell Mol Physiol. 2001;280:L1309–L1317. [PubMed] [Google Scholar]

32. Gerits N, Mikalsen T, Kostenko S, Shiryaev A, Johannessen M, Moens U. Modulation of F-actin rearrangement by the cyclic AMP/cAMP-dependent protein kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires PKA-induced nuclear export of MK5. J Biol Chem. 2007;282:37232–37243. doi: 10.1074/jbc.M704873200. [PubMed] [CrossRef] [Google Scholar]

33. Yang W, LV X, Yu S, Guan W, Di D, Wang H, Li J. Effect of cAMP-PKA-CREB signal pathway in the model of alcoholic hepatic fibrosis stellate cells isolated from rats. Anhui Med Pharm J. 2012;16:729–731. [Google Scholar]

34. Bruce JI, Shuttleworth TJ, Giovannucci DR, Yule DI. Phosphorylation of inositol 1, 4,5-trisphosphate receptors in parotid acinar cells. A mechanism for the synergistic effects of cAMP on Ca2+ signaling. J Biol Chem. 2002;277:1340–1348. doi: 10.1074/jbc.M106609200. [PubMed] [CrossRef] [Google Scholar]

35. Grønborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, Jensen ON, Pandey A. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: Identification of a novel protein, Frigg, as a protein kinase a substrate. Mol Cell Proteomics. 2002;1:517–527. doi: 10.1074/mcp.M200010-MCP200. [PubMed] [CrossRef] [Google Scholar]

36. Schmitt A, Nebreda AR. Inhibition of Xenopus oocyte meiotic maturation by catalytically inactive protein kinase A. Proc Natl Acad Sci USA. 2002;99:4361–4366. doi: 10.1073/pnas.022056399. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Lei H, Venkatakrishnan A, Yu S, Kazlauskas A. Protein kinase A-dependent translocation of Hsp90 alpha impairs endothelial nitric-oxide synthase activity in high glucose and diabetes. J Biol Chem. 2007;282:9364–9371. doi: 10.1074/jbc.M608985200. [PubMed] [CrossRef] [Google Scholar]

38. Goueli BS, Hsiao K, Goueli ASA. A novel and simple method to assay the activity of individual protein kinases in a crude tissue extract. Methods Mol Med. 2001;39:633–644. [PubMed] [Google Scholar]

39. Fujikawa H, Kanno T, Nagata T, Nishizaki T. The phosphodiesterase III inhibitor olprinone inhibits hippocampal glutamate release via a cGMP/PKG pathway. Neurosci Lett. 2008;448:208–211. doi: 10.1016/j.neulet.2008.10.079. [PubMed] [CrossRef] [Google Scholar]

40. Kanno T, Yamamoto H, Yaguchi T, Hi R, Mukasa T, Fujikawa H, Nagata T, Yamamoto S, Tanaka A, Nishizaki T. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site. J Lipid Res. 2006;47:1146–1156. doi: 10.1194/jlr.M500329-JLR200. [PubMed] [CrossRef] [Google Scholar]

41. Brindlet P, Nakajima T, Montminy M. Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP (cAMP response element-binding protein) Proc Natl Acad Sci USA. 1995;92:10521–10525. doi: 10.1073/pnas.92.23.10521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Shih HM, Goldman PS, DeMaggio AJ, Hollenberg SM, Goodman RH, Hoekstra MF. A positive genetic selection for disrupting protein-protein interactions: Identification of CREB mutations that prevent association with the coactivator CBP. Proc Natl Acad Sci USA. 1996;93:13896–13901. doi: 10.1073/pnas.93.24.13896. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Ferreri K, Gillt G, Montminy M. The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex (glutamine-rich activator/TATA binding protein-associated factor dTAF11O) Proc Natl Acad Sci USA. 1994;91:1210–1213. doi: 10.1073/pnas.91.4.1210. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Ginty DD. Calcium regulation of gene expression: Isn't that spatial? Neuron. 1997;18:183–186. doi: 10.1016/S0896-6273(00)80258-5. [PubMed] [CrossRef] [Google Scholar]

45. Parker D, Ferreri K, Nakajima T, LaMorte VJ, Evans R, Koerber SC, Hoeger C, Montminy MR. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol Cell Biol. 1996;16:694–703. doi: 10.1128/MCB.16.2.694. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Neurosci. 1998;21:127–148. [PubMed] [Google Scholar]

47. Riccio A, Alvania RS, Lonze BE, Ramanan N, Kim T, Huang Y, Dawson TM, Snyder SH, Ginty DD. A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol Cell. 2006;21:283–294. doi: 10.1016/j.molcel.2005.12.006. [PubMed] [CrossRef] [Google Scholar]

48. Moon EY, Lee YS, Choi WS, Lee MH. Toll-like receptor 4-mediated cAMP production up-regulates B-cell activating factor expression in Raw264.7 macrophages. Exp Cell Res. 2011;317:2447–2455. doi: 10.1016/j.yexcr.2011.07.003. [PubMed] [CrossRef] [Google Scholar]

49. Deng H, Zhang N, Wang Y, Chen J, Shen J, Wang Z, Xu R, Zhang J, Song D, Li D. S632A3, a new glutarimide antibiotic, suppresses lipopolysaccharide-induced pro-inflammatory responses via inhibiting the activation of glycogen synthase kinase 3β Exp Cell Res. 2012;318:2592–2603. doi: 10.1016/j.yexcr.2012.08.008. [PubMed] [CrossRef] [Google Scholar]

50. Wang QS, Tian JS, Cui YL, Gao S. Genipin is active via modulating monoaminergic transmission and levels of brain-derived neurotrophic factor (BDNF) in rat model of depression. Neuroscience. 2014;275:365–373. doi: 10.1016/j.neuroscience.2014.06.032. [PubMed] [CrossRef] [Google Scholar]

51. Xu G, Tu W, Qin AS. The relationship between deiodinase activity and inflammatory responses under the stimulation of uremic toxins. J Transl Med. 2014;12:239. doi: 10.1186/s12967-014-0239-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Fang JQ, Jun JF, Liang Y, Du JY. Electroacupuncture mediates extracellular signalregulated kinase 1/2 pathways in the spinal cord of rats with inflammatory pain. BMC Complement Altern Med. 2014;14:285. doi: 10.1186/1472-6882-14-285. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Guan CX, Cui YR, Sun GY, Yu F, Tang CY, Li YC, Liu HJ, Fang X. Role of CREB in vasoactive intestinal peptide-mediated wound healing in human bronchial epithelial cells. Regul Pept. 2009;153:64–69. doi: 10.1016/j.regpep.2008.12.003. [PubMed] [CrossRef] [Google Scholar]

54. Yang Y, Yu T, Lee YG, Yang WS, Oh J, Jeong D, Lee S, Kim TW, Park YC, Sung GH, Cho JY. Methanol extract of Hopea odorata suppresses inflammatory responses via the direct inhibition of multiple kinases. J Ethnopharmacol. 2013;145:598–607. doi: 10.1016/j.jep.2012.11.041. [PubMed] [CrossRef] [Google Scholar]

55. Carey MF, Peterson CL, Smale ST. Chromatin immunoprecipitation (ChIP) Cold Spring Harb Protoc. 20092009:pdb prot5279. [PubMed] [Google Scholar]

56. Andreeva SG, Dikkes P, Epstein PM, Rosenberg PA. Expression of cGMP-Specific Phosphodiesterase 9A mRNA in the rat brain. J Neurosci. 2001;21:9068–9076. [PMC free article] [PubMed] [Google Scholar]

57. Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents. Pharmacol Ther. 2006;109:366–398. doi: 10.1016/j.pharmthera.2005.07.003. [PubMed] [CrossRef] [Google Scholar]

58. Nanda K, Chatterjee M, Arya R, Mukherjee S, Saini KS, Dastidar S, Ray A. Optimization and validation of a reporter gene assay for screening of phosphodiesterase inhibitors in a high throughput system. Biotechnol J. 2008;3:1276–1279. doi: 10.1002/biot.200800102. [PubMed] [CrossRef] [Google Scholar]

59. Page CP, Spina D. Selective PDE inhibitors as novel treatments for respiratory diseases. Curr Opin Pharmacol. 2012;12:275–286. doi: 10.1016/j.coph.2012.02.016. [PubMed] [CrossRef] [Google Scholar]

60. Pinner NA, Hamilton LA, Hughes A. Roflumilast: A phosphodiesterase-4 inhibitor for the treatment of severe chronic obstructive pulmonary disease. Clin Ther. 2012;34:56–66. doi: 10.1016/j.clinthera.2011.12.008. [PubMed] [CrossRef] [Google Scholar]

62. Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M, Marks AR. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell. 2005;123:25–35. doi: 10.1016/j.cell.2005.07.030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Peter D, Jin SL, Conti M, Hatzelmann A, Zitt C. Differential expression and function of phosphodiesterase 4 (PDE4) subtypes in human primary CD4+ T cells: Predominant role of PDE4D. J Immunol. 2007;178:4820–4831. doi: 10.4049/jimmunol.178.8.4820. [PubMed] [CrossRef] [Google Scholar]

64. Takahashi M, Terwilliger R, Lane C, Mezes PS, Conti M, Duman RS. Chronic antidepressant administration increases the expression of cAMP-specific phosphodiesterase 4A and 4B isoforms. J Neurosci. 1999;19:610–618. [PMC free article] [PubMed] [Google Scholar]

65. Jin L, Hill KK, Filak H, Mogan J, Knowles H, Zhang B, Perraud AL, Cambier JC, Lenz LL. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J Immunol. 2011;187:2595–2601. doi: 10.4049/jimmunol.1100088. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Liu X, Guo H, Sayed MD, Lu Y, Yang T, Zhou D, Chen Z, Wang H, Wang C, Xu J. cAMP/PKA/CREB/GLT1 signaling involved in the antidepressant-like effects of phosphodiesterase 4D inhibitor (GEBR-7b) in rats. Neuropsychiatr Dis Treat. 2016;12:219–227. [PMC free article] [PubMed] [Google Scholar]

67. Kono Y, Hülsmann S. Presynaptic facilitation of glycinergic mIPSC is reduced in mice lacking α3 glycine receptor subunits. Neuroscience. 2016;320:1–7. doi: 10.1016/j.neuroscience.2016.01.063. [PubMed] [CrossRef] [Google Scholar]

68. Ramakrishnan SK, Zhang H, Takahashi S, Centofanti B, Periyasamy S, Weisz K, Chen Z, Uhler MD, Rui L, Gonzalez FJ, Shah YM. HIF2α Is an Essential Molecular Brake for Postprandial Hepatic Glucagon Response Independent of Insulin Signaling. Cell Metab. 2016 Feb 3; doi: 10.1016/j.cmet.2016.01.004. Epub ahead of print. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Pal S, Khan K, China SP, Mittal M, Shrivastava R, Taneja I, Hossain Z, Mandalapu D, Gayen JR, et al. Theophylline, a methylxanthine drug induces osteopenia and alters calciotropic hormones, and prophylactic vitamin D treatment protects against these changes in rats. Toxicol Appl Pharmacol. 2016 Feb 3; doi: 10.1016/j.taap.2016.02.002. Epub ahead of print. [PubMed] [CrossRef] [Google Scholar]

70. Bobin P, Varin A, Lefebvre F, Fischmeister R, Vandecasteele G, Leroy J. Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+ waves induced by cAMP-phosphodiesterase inhibitors. Cardiovasc Res. 2016 Feb 4; doi: 10.1093/cvr/cvw027. Epub ahead of print. [PubMed] [CrossRef] [Google Scholar]

71. Osawa Y, Lee HT, Hirshman CA, Xu D, Emala CW. Lipopolysaccharide-induced sensitization of adenylyl cyclase activity in murine macrophages. Am J Physiol Cell Physiol. 2006;290:C143–C151. doi: 10.1152/ajpcell.00171.2005. [PubMed] [CrossRef] [Google Scholar]

72. Kobayashi Y, Mizoguchi T, Take I, Kurihara S, Udagawa N, Takahashi N. Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1. J Biol Chem. 2005;280:11395–11403. doi: 10.1074/jbc.M411189200. [PubMed] [CrossRef] [Google Scholar]

73. Malbon CC, Graziano MP. Adenosine deaminase normalizes cyclic AMP responses of hypothyroid rat fat cells to forskolin, but not beta-adrenergic agonists. FEBS Lett. 1983;155:35–38. doi: 10.1016/0014-5793(83)80203-8. [PubMed] [CrossRef] [Google Scholar]

74. Jeon SH, Chae BC, Kim HA, Seo GY, Seo DW, Chun GT, Yie SW, Eom SH, Kim PH. The PKA/CREB Pathway is closely involved in VEGF expression in mouse macrophages. Mol Cells. 2007;23:23–29. [PubMed] [Google Scholar]

75. Burgos-Ramos E, Hervás-Aguilar A, Puebla-Jiménez L, Boyano-Adánez MC, Arilla-Ferreiro E. Chronic but not acute intracerebroventricular administration of amyloid beta-peptide 25–35 decreases somatostatin content, adenylate cyclase activity, somatostatin-induced inhibition of adenylate cyclase activity and adenylate cyclase I levels in the rat hippocampus. J Neurosci Res. 2007;85:433–442. doi: 10.1002/jnr.21115. [PubMed] [CrossRef] [Google Scholar]

76. Tajima T, Murata T, Aritake K, Urade Y, Michishita M, Matsuoka T, Narumiya S, Ozaki H, Hori M. EP2 and EP4 receptors on muscularis resident macrophages mediate LPS-induced intestinal dysmotility via iNOS upregulation through cAMP/ERK signals. Am J Physiol Gastrointest Liver Physiol. 2012;302:G524–G534. doi: 10.1152/ajpgi.00264.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Okado-Matsumoto A, Matsumoto A, Fujii J, Taniguchi N. Effect of cAMP on inducible nitric oxide synthase gene expression: Its dual and cell-specific functions. Antioxid Redox Signal. 2000;2:631–642. doi: 10.1089/ars.2000.2.4-631. [PubMed] [CrossRef] [Google Scholar]

78. Mukhopadhyay S, Das S, Williams EA, Moore D, Jones JD, Zahm DS, Ndengele MM, Lechner AJ, Howlett AC. Lipopolysaccharide and cyclic AMP regulation of CB(2) cannabinoid receptor levels in rat brain and mouse RAW 264.7 macrophages. J Neuroimmunol. 2006;181:82–92. doi: 10.1016/j.jneuroim.2006.08.002. [PubMed] [CrossRef] [Google Scholar]

79. Goldsmith M, Avni D, Ernst O, Glucksam Y, Levy-Rimler G, Meijler MM, Zor T. Synergistic IL-10 induction by LPS and the ceramide-1-phosphate analog PCERA-1 is mediated by the cAMP and p38 MAP kinase pathways. Mol Immunol. 2009;46:1979–1987. doi: 10.1016/j.molimm.2009.03.009. [PubMed] [CrossRef] [Google Scholar]

80. Cho IJ, Woo NR, Shin IC, Kim SG. H89, an inhibitor of PKA and MSK, inhibits cyclic-AMP response element binding protein-mediated MAPK phosphatase-1 induction by lipopolysaccharide. Inflamm Res. 2009;58:863–872. doi: 10.1007/s00011-009-0057-z. [PubMed] [CrossRef] [Google Scholar]

81. Ma J, Chen M, Xia SK, Shu W, Guo Y, Wang YH, Xu Y, Bai XM, Zhang L, Zhang H, et al. Prostaglandin E2 promotes liver cancer cell growth by the upregulation of FUSE-binding protein 1 expression. Int J Oncol. 2013;42:1093–1104. [PubMed] [Google Scholar]

82. Kotomi F, Kotera J, Michibata H, Yuasa K, Takebayashi S, Okumura K, Omori K. Cloning and Characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A) J Biol Chem. 1999;274:18438–18445. doi: 10.1074/jbc.274.26.18438. [PubMed] [CrossRef] [Google Scholar]

83. Wheeler MA, Ayyagari RR, Wheeler GL, Weiss RM. Regulation of cyclic nucleotides in the urinary tract. J Smooth Muscle Res. 2005;41:1–21. doi: 10.1540/jsmr.41.1. [PubMed] [CrossRef] [Google Scholar]

84. Lerner A, Epstein PM. Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J. 2006;393:21–41. doi: 10.1042/BJ20051368. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Dousa TP. Cyclic-3′,5′-nucleotide phosphodiesterase isozymes in cell biology and pathophysiology of the kidney. Kidney Int. 1999;55:29–62. doi: 10.1046/j.1523-1755.1999.00233.x. [PubMed] [CrossRef] [Google Scholar]

86. Lipworth BJ. Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. Lancet. 2005;365:167–175. doi: 10.1016/S0140-6736(05)17708-3. [PubMed] [CrossRef] [Google Scholar]

87. Dastidar SG, Rajagopal D, Ray A. Therapeutic benefit of PDE4 inhibitors in inflammatory diseases. Curr Opin Investig Drugs. 2007;8:364–372. [PubMed] [Google Scholar]

88. Bielekova B, Lincoln A, McFarland H, Martin R. Therapeutic potential of phosphodiesterase-4 and-3 inhibitors in Th2-mediated autoimmune diseases. J Immunol. 2000;164:1117–1124. doi: 10.4049/jimmunol.164.2.1117. [PubMed] [CrossRef] [Google Scholar]

89. Avni D, Philosoph A, Meijler MM, Zor T. The ceramide-1-phosphate analogue PCERA-1 modulates tumour necrosis factor-alpha and interleukin-10 production in macrophages via the cAMP-PKA-CREB pathway in a GTP-dependent manner. Immunology. 2010;129:375–385. doi: 10.1111/j.1365-2567.2009.03188.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Sosroseno W, Musa M, Ravichandran M, Fikri Ibrahim M, Bird PS, Seymour GJ. The role of cyclic-AMP on arginase activity by a murine macrophage cell line (RAW264.7) stimulated with lipopolysaccharide from Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol. 2006;21:347–352. doi: 10.1111/j.1399-302X.2006.00300.x. [PubMed] [CrossRef] [Google Scholar]

91. Navakkode S, Sajikumar S, Frey JU. Mitogen-activated protein kinase-mediated reinforcement of hippocampal early long-term depression by the type IV-specific phosphodies-terase inhibitor rolipram and its effect on synaptic tagging. J Neurosci. 2005;25:10664–10670. doi: 10.1523/JNEUROSCI.2443-05.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Chi ZL, Hayasaka S, Zhang XY, Hayasaka Y, Cui HS. Effects of rolipram, a selective inhibitor of type 4 phosphodiesterase, on lipopolysaccharide-induced uveitis in rats. Invest Ophthalmol Vis Sci. 2004;45:2497–2502. doi: 10.1167/iovs.03-1373. [PubMed] [CrossRef] [Google Scholar]

93. Yoshimura K, Hiramatsu Y, Murakami M. Cyclic AMP potentiates substance P-induced amylase secretion by augmenting the effect of calcium in the rat parotid acinar cells. Biochim Biophys Acta. 1998;1402:171–187. doi: 10.1016/S0167-4889(98)00007-X. [PubMed] [CrossRef] [Google Scholar]

94. Gobejishvili L, Avila DV, Barker DF, Ghare S, Henderson D, Brock GN, Kirpich IA, Joshi-Barve S, Mokshagundam SP, McClain CJ, Barve S. S-adenosylmethionine decreases lipopolysaccharide-induced phosphodiesterase 4B2 and attenuates tumor necrosis factor expression via cAMP/protein kinase A pathway. J Pharmacol Exp Ther. 2011;337:433–443. doi: 10.1124/jpet.110.174268. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Liou SF, Hsu JH, Lin IL, Ho ML, Hsu PC, Chen LW, Chen IJ, Yeh JL. KMUP-1 suppresses RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss: Roles of MAPKs, Akt, NF-kB and calcium/calcineurin/NFATc1 pathways. PLoS One. 2013;8:e69468. doi: 10.1371/journal.pone.0069468. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Hamblin JN, Angell TD, Ballantine SP, Cook CM, Cooper AW, Dawson J, Delves CJ, Jones PS, Lindvall M, Lucas FS, et al. Pyrazolopyridines as a novel structural class of potent and selective PDE4 inhibitors. Bioorg Med Chem Lett. 2008;18:4237–4241. doi: 10.1016/j.bmcl.2008.05.052. [PubMed] [CrossRef] [Google Scholar]

97. Park WS, Jung WK, Lee DY, Moon C, Yea SS, Park SG, Seo SK, Park C, Choi YH, Kim GY, et al. Cilostazol protects mice against endotoxin shock and attenuates LPS-induced cytokine expression in RAW 264.7 macrophages via MAPK inhibition and NF-kappaB inactivation: Not involved in cAMP mechanisms. Int Immunopharmacol. 2010;10:1077–1085. doi: 10.1016/j.intimp.2010.06.008. [PubMed] [CrossRef] [Google Scholar]

98. Dong H, Osmanova V, Epstein PM, Brocke S. Phosphodiesterase 8 (PDE8) regulates chemotaxis of activated lymphocytes. Biochem Biophys Res Commun. 2006;345:713–719. doi: 10.1016/j.bbrc.2006.04.143. [PubMed] [CrossRef] [Google Scholar]

99. Wunder F, Stasch JP, Hütter J, Alonso-Alija C, Hüser J, Lohrmann E. A cell-based cGMP assay useful for ultra-high-throughput screening and identification of modulators of the nitric oxide/cGMP pathway. Anal Biochem. 2005;339:104–112. doi: 10.1016/j.ab.2004.12.025. [PubMed] [CrossRef] [Google Scholar]

100. Lallemend F, Lefebvre PP, Hans G, Rigo JM, Van de Water TR, Moonen G, Malgrange B. Substance P protects spiral ganglion neurons from apoptosis via PKC-Ca2+-MAPK/ERK pathways. J Neurochem. 2003;87:508–521. doi: 10.1046/j.1471-4159.2003.02014.x. [PubMed] [CrossRef] [Google Scholar]

101. Gilmore TD. Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 2006;25:6680–6684. doi: 10.1038/sj.onc.1209954. [PubMed] [CrossRef] [Google Scholar]

102. Denninger JW, Marletta MA. Guanylate cyclase and the. NO/cGMP signaling pathway. Biochim Biophys Acta. 1999;1411:334–350. doi: 10.1016/S0005-2728(99)00024-9. [PubMed] [CrossRef] [Google Scholar]

103. Edgar VA, Cremaschi GA, Sterin-Borda L, Genaro AM. Altered expression of autonomic neurotransmitter receptors and proliferative responses in lymphocytes from a chronic mild stress model of depression: Effects of fluoxetine. Brain Behav Immun. 2002;16:333–350. doi: 10.1006/brbi.2001.0632. [PubMed] [CrossRef] [Google Scholar]

104. Reierson GW, Mastronardi CA, Licinio J, Wong ML. Repeated antidepressant therapy increases cyclic GMP signaling in rat hippocampus. Neurosci Lett. 2009;466:149–153. doi: 10.1016/j.neulet.2009.09.047. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Lee AK, Sung SH, Kim YC, Kim SG. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappaBalpha phosphorylation, C/EBP and AP-1 activation. Br J Pharmacol. 2003;139:11–20. doi: 10.1038/sj.bjp.0705231. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, Necessary for IkappaB Phosphorylation and NF-kappaB activation. Cell. 1997;91:243–252. doi: 10.1016/S0092-8674(00)80406-7. [PubMed] [CrossRef] [Google Scholar]

107. Chen BC, Liao CC, Hsu MJ, Liao YT, Lin CC, Sheu JR, Lin CH. Peptidoglycan-induced IL-6 production in RAW 264.7 macrophages is mediated by cyclooxygenase-2, PGE2/PGE4 receptors, protein kinase A, I kappa B Kinase and NF-kappa B. J Immunol. 2006;177:681–693. doi: 10.4049/jimmunol.177.1.681. [PubMed] [CrossRef] [Google Scholar]

108. Ollivier V, Parry GC, Cobb RR, de Prost D, Mackman N. Elevated cyclic AMP inhibits NF-kappaB-mediated transcription in human monocytic cells and endothelial cells. J Biol Chem. 1996;271:20828–20835. doi: 10.1074/jbc.271.34.20828. [PubMed] [CrossRef] [Google Scholar]

109. Hofer AM, Lefkimmiatis K. Extracellular calcium and cAMP: Second messengers as 'third messengers'? Physiology (Bethesda) 2007;22:320–327. doi: 10.1152/physiol.00019.2007. [PubMed] [CrossRef] [Google Scholar]

110. Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999;283:381–387. doi: 10.1126/science.283.5400.381. [PubMed] [CrossRef] [Google Scholar]

111. Landa LR, Jr, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW. Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J Biol Chem. 2005;280:31294–31302. doi: 10.1074/jbc.M505657200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Moore TM, Chetham PM, Kelly JJ, Stevens T. Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. Am J Physiol. 1998;275:L203–L222. [PubMed] [Google Scholar]

113. Henley JR, Huang KH, Wang D, Poo MM. Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron. 2004;44:909–916. doi: 10.1016/j.neuron.2004.11.030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Vajanaphanich M, Schultz C, Tsien RY, Traynor-Kaplan AE, Pandol SJ, Barrett KE. Cross-talk between calcium and cAMP-dependent intracellular signaling pathways. Implications for synergistic secretion in T84 colonic epithelial cells and rat pancreatic acinar cells. J Clin Invest. 1995;96:386–393. doi: 10.1172/JCI118046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Kapur R, Giuliano KA, Campana M, Adams T, Olson K, Jung D, Mrksich M, Chandrasekaran V, Taylor DL. Streamlining the drug discovery process by integrating miniaturization, high throughput screening, high content screening, and automation on the CellChip™ system. Biomed Microdevices. 1999;2:99–109. doi: 10.1023/A:1009993519771. [CrossRef] [Google Scholar]

116. Edwards BS, Oprea T, Prossnitz ER, Sklar LA. Flow cytometry for high-throughput, high-content screening. Curr Opin Chem Biol. 2004;8:392–398. doi: 10.1016/j.cbpa.2004.06.007. [PubMed] [CrossRef] [Google Scholar]

What is the first step in signal transduction?

1. Reception: A cell detects a signaling molecule from the outside of the cell. A signal is detected when the chemical signal (also known as a ligand) binds to a receptor protein on the surface of the cell or inside the cell. 2.

What does cAMP do during the transduction stage?

Adenosine 3′,5′-cyclic monophosphate (cAMP) is a nucleotide that acts as a key second messenger in numerous signal transduction pathways. cAMP regulates various cellular functions, including cell growth and differentiation, gene transcription and protein expression.

What are the steps in the signal transduction pathway?

The signal transduction pathway has three main steps: Reception: The process by which a cell detects a signal in the environment. Transduction: The process of activating a series of proteins inside the cell from the cell membrane. Response: The change in behavior that occurs in the cell as a result of the signal.

What is the role of a first messenger in a signal transduction pathway?

First messengers are extracellular signaling molecules such as hormones or neurotransmitters that bind to cell-surface receptors and activate intracellular signaling pathways.