The concept of bioelectricity and how it controls muscle movement was formulated by

  • Adamatzky A (2018) Towards fungal computer. Interface. Focus 8:20180029. //doi.org/10.1098/rsfs.2018.0029

    Article  Google Scholar 

  • Adamatzky A, Jones J (2010) On electrical correlates of Physarum polycephalum spatial activity: can we see Physarum machine in the dark? ArXiv arXiv:1012.1809

  • Adams DS, Lemire JM, Kramer RH, Levin M (2014) Optogenetics in developmental biology: using light to control ion flux-dependent signals in Xenopus embryos. Int J Dev Biol 58:851–861. //doi.org/10.1387/ijdb.140207ml

    Article  Google Scholar 

  • Adams DS, Uzel SG, Akagi J, Wlodkowic D, Andreeva V, Yelick PC et al (2016) Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil syndrome. J Physiol 594:3245–3270. //doi.org/10.1113/JP271930

    Article  Google Scholar 

  • Albantakis L, Marshall W, Hoel EP, Tononi G (2017) What caused what? An irreducible account of actual causation. arXiv arXiv:1708.06716

  • Anonymous (1957) Bibliography of Harold Saxton Burr. Yale J Biol Med 30:163–167

    Google Scholar 

  • Ashikaga H, Prieto-Castrillo F, Kawakatsu M, Dehghani N (2018) Causal scale of rotors in a cardiac system. Front Phys 6:30. //doi.org/10.3389/fphy.2018.00030

    Article  Google Scholar 

  • Bates E (2015) Ion channels in development and cancer. Annu Rev Cell Dev Biol 31:231–247. //doi.org/10.1146/annurev-cellbio-100814-125338

    Article  Google Scholar 

  • Bentrup F, Sandan T, Jaffe L (1967) Induction of polarity in fucus eggs by potassium ion gradients. Protoplasma 64:254–266

    Article  Google Scholar 

  • Bischof M (2000) Field concepts and the emergence of a holistic biophysics. In: Beloussov LV, Popp FA, Voeikov V, Wijk R (eds) Biophotonics and coherent systems. Moscow University Press, Moscow, pp 1–25

    Google Scholar 

  • Bizzari M, Brash DE, Briscoe J, Grieneisen VA, Stern CD, Levin M (2019) A call for a better understanding of causation in cell biology. Nat Rev Mol Cell Biol. //doi.org/10.1038/s41580-019-0127-1

    Article  Google Scholar 

  • Bizzarri M, Palombo A, Cucina A (2013) Theoretical aspects of systems biology. Prog Biophys Mol Biol 112:33–43. //doi.org/10.1016/j.pbiomolbio.2013.03.019

    Article  Google Scholar 

  • Blackiston DJ, Anderson GM, Rahman N, Bieck C, Levin M (2015) A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms. Neurotherapeutics 12:170–184. //doi.org/10.1007/s13311-014-0317-7

    Article  Google Scholar 

  • Borgens RB (1982) What is the role of naturally produced electric current in vertebrate regeneration and healing. Int Rev Cytol 76:245–298

    Article  Google Scholar 

  • Borgens RB (1983) The role of ionic current in the regeneration and development of the amphibian limb. Prog Clin Biol Res 110:597–608

    Google Scholar 

  • Borgens RB, Vanable JW Jr, Jaffe LF (1977a) Bioelectricity and regeneration: large currents leave the stumps of regenerating newt limbs. Proc Natl Acad Sci USA 74:4528–4532

    Article  Google Scholar 

  • Borgens RB, Vanable JW Jr, Jaffe LF (1977b) Bioelectricity and regeneration: I. Initiation of frog limb regeneration by minute currents. J Exp Zool 200:403–416

    Article  Google Scholar 

  • Borgens RB, Vanable JW Jr, Jaffe L (1979a) Small artificial currents enhance Xenopus limb regeneration. J Exp Zool 207:217–226

    Article  Google Scholar 

  • Borgens RB, Vanable JW Jr, Jaffe LF (1979b) Reduction of sodium dependent stump currents disturbs urodele limb regeneration. J Exp Zool 209:377–386

    Article  Google Scholar 

  • Borgens RB, Vanable JW Jr, Jaffe LF (1979c) Role of subdermal current shunts in the failure of frogs to regenerate. J Exp Zool 209:49–56

    Article  Google Scholar 

  • Borgens RB, Jaffe LF, Cohen MJ (1980) Large and persistent electrical currents enter the transsected lamprey spinal cord. Proc Nat Acad Sci USA 77:1209–1212

    Article  Google Scholar 

  • Borgens RB, Roederer E, Cohen MJ (1981) Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213:611–617

    Article  Google Scholar 

  • Boussard A, Delescluse J, Perez-Escudero A, Dussutour A (2019) Memory inception and preservation in slime moulds: the quest for a common mechanism. Philos Trans R Soc Lond B Biol Sci 374:20180368. //doi.org/10.1098/rstb.2018.0368

    Article  Google Scholar 

  • Brandts WA (1993) A field model of left-right asymmetries in the pattern regulation of a cell IMA. J Math Appl Med Biol 10:31–50

    Article  Google Scholar 

  • Brandts WAM, Trainor LEH (1990a) A nonlinear field model of pattern-formation: application to intracellular pattern reversal in tetrahymena. J Theor Biol 146:57–85

    Article  Google Scholar 

  • Brandts WAM, Trainor LEH (1990b) A nonlinear field model of pattern-formation: intercalation in morphalactic regulation. J Theor Biol 146:37–56

    Article  Google Scholar 

  • Bryant DM, Sousouis K, Farkas JE, Bryant S, Thao N, Guzikowski AR et al (2017) Repeated removal of developing limb buds permanently reduces appendage size in the highly-regenerative axolotl. Dev Biol 424:1–9. //doi.org/10.1016/j.ydbio.2017.02.013

    Article  Google Scholar 

  • Burr HS (1932) An electro-dynamic theory of development suggested by studies of proliferation rates in the brain of Amblystoma. J Comp Neurol 56:347–371

    Article  Google Scholar 

  • Burr HS (1940) Biologic organization and the cancer problem. Yale J Biol Med 12:277–282

    Google Scholar 

  • Burr HS (1941) Changes in the field properties of mice with transplanted tumors. Yale J Biol Med 13:783–788

    Google Scholar 

  • Burr HS (1944) The meaning of bio-electric potentials. Yale J Biol Med 16:353–360

    Google Scholar 

  • Burr HS (1955) Certain electrical properties of slime mold. Anat Rec 121:391–391

    Google Scholar 

  • Burr HS (1956) Physics, psychology, and medicine. Yale J Biol Med 29:161–162

    Google Scholar 

  • Burr HS (1957) Life and mind. Yale J Biol Med 29:553–554

    Google Scholar 

  • Burr HS, Northrop F (1935) The electro-dynamic theory of life. Q Rev Biol 10:322–333

    Article  Google Scholar 

  • Burr HS, Seifriz W (1955) Response of the slime mold to electric stimulus. Science 122:1020–1021

    Article  Google Scholar 

  • Burr HS, Sinnott EW (1944) Electrical correlates of form in cucurbit fruits. Am J Bot 31:249–253

    Article  Google Scholar 

  • Burr HS, Lane CT, Nims LF (1936) A vacuum tube micro-voltmeter for the measurement of bio-electric phenomena. Yale J Biol Med 9:65–76

    Google Scholar 

  • Burr HS, Strong LC, Smith GM (1938) Bio-electric correlates of methylcolanthrene-induced tumors in mice. Yale J Biol Med 10:539–544

    Google Scholar 

  • Burr HS, Smith GM, Strong LC (1940) Electrometric studies of tumors in mice induced by the external application of benzpyrene. Yale J Biol Med 12:711–717

    Google Scholar 

  • Chernet and Levin, 2013a B Chernet M Levin 2013a Endogenous voltage potentials and the microenvironment: bioelectric signals that reveal, induce and normalize cancer J Clin Exp Oncol Suppl 1 10.4172/2324-9110.S1-002.

  • Chernet BT, Levin M (2013b) Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis Models Mech 6:595–607. //doi.org/10.1242/dmm.010835

    Article  Google Scholar 

  • Chernet BT, Levin M (2014) Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget 5:3287–3306

    Article  Google Scholar 

  • Chernet BT, Adams DS, Lobikin M, Levin M (2016) Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget 7:19575–19588. //doi.org/10.18632/oncotarget.8036

    Article  Google Scholar 

  • Cohen AE, Venkatachalam V (2014) Bringing bioelectricity to light. Annu Rev Biophys 43:211–232. //doi.org/10.1146/annurev-biophys-051013-022717

    Article  Google Scholar 

  • Cone CD Jr (1970) Variation of the transmembrane potential level as a basic mechanism of mitosis control. Oncology 24:438–470

    Article  Google Scholar 

  • Cone CD (1971) Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J Theor Biol 30:151–181

    Article  Google Scholar 

  • Cone CD (1974) The role of the surface electrical transmembrane potential in normal and malignant mitogenesis. Ann NY Acad Sci 238:420–435

    Article  Google Scholar 

  • Cone CD, Cone CM (1976) Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science 192:155–158

    Article  Google Scholar 

  • Cone CD, Tongier M (1971) Control of somatic cell mitosis by simulated changes in the transmembrane potential level. Oncology 25:168–182

    Article  Google Scholar 

  • Cone CD, Tongier M (1973) Contact inhibition of division: involvement of the electrical transmembrane potential. J Cell Physiol 82:373–386

    Article  Google Scholar 

  • de Wiljes OO, van Elburg RA, Biehl M, Keijzer FA (2015) Modeling spontaneous activity across an excitable epithelium: support for a coordination scenario of early neural evolution. Front Comput Neurosci 9:110. //doi.org/10.3389/fncom.2015.00110

    Article  Google Scholar 

  • Durant F, Bischof J, Fields C, Morokuma J, LaPalme J, Hoi A, Levin M (2019) The role of early bioelectric signals in the regeneration of planarian anterior/posterior polarity. Biophys J 116:948–961. //doi.org/10.1016/j.bpj.2019.01.029

    Article  Google Scholar 

  • Dussutour A, Ma Q, Sumpter D (2019) Phenotypic variability predicts decision accuracy in unicellular organisms. Proc Biol Sci 286:20182825. //doi.org/10.1098/rspb.2018.2825

    Article  Google Scholar 

  • Fields C, Bischof J, Levin M (2020) Morphological coordination: unifying neural and non-neural signaling. Physiology 35:16–30

    Article  Google Scholar 

  • Flack JC (2017) Coarse-graining as a downward causation mechanism. Philos Trans A Math Phys Eng Sci 375:20160338. //doi.org/10.1098/rsta.2016.0338

    Article  Google Scholar 

  • Friston K, Levin M, Sengupta B, Pezzulo G (2015) Knowing one’s place: a free-energy approach to pattern regulation. J R Soc Interface 12:20141383. //doi.org/10.1098/rsif.2014.1383

    Article  Google Scholar 

  • Funk R (2013) Ion gradients in tissue and organ biology. Biol Sys. //doi.org/10.4172/bso.1000105

    Article  Google Scholar 

  • Goodwin BC (1985) Developing organisms as self-organizing fields. In: Antonelli PL (ed) Mathematical essays on growth and the emergence of form. University of Alberta Press, Alberta

  • Goodwin BC, Lacroix NH (1984) A further study of the holoblastic cleavage field. J Theor Biol 109:41–58

    Article  Google Scholar 

  • Goodwin BC, Pateromichelakis S (1979) The role of electrical fields, ions, and the cortex in the morphogenesis of acetabularia. Planta 145:427–435

    Article  Google Scholar 

  • Goodwin BC, Trainor LE (1980) A field description of the cleavage process in embryogenesis. J Theor Biol 85:757–770

    Article  Google Scholar 

  • Grenell RG, Burr HS (1947) Surface potentials and peripheral nerve regeneration. Federation Proc 6:117–117

    Google Scholar 

  • Grossberg S (1978) Communication, memory, and development. In: Rosen R, Snell F (eds) Progress in theoretical biology, vol 5. Academic Press, New York, pp 183–232

    Chapter  Google Scholar 

  • Haldane JS (1917) Organism and environment as illustrated by the physiology of breathing: Yale University Mrs Hepsa Ely Silliman memorial lectures 1916. Yale University Press, New Haven

    Book  Google Scholar 

  • Hart TN, Trainor LE, Goodwin BC (1989) Diffusion effects in calcium-regulated strain fields. J Theor Biol 136:327–336

    Article  Google Scholar 

  • Herrera-Rincon C, Pai VP, Moran KM, Lemire JM, Levin M (2017) The brain is required for normal muscle and nerve patterning during early Xenopus development. Nat Commun 8:587. //doi.org/10.1038/s41467-017-00597-2

    Article  Google Scholar 

  • Hinkle L, McCaig CD, Robinson KR (1981) The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J Physiol 314:121–135

    Article  Google Scholar 

  • Iwashita M, Watanabe M, Ishii M, Chen T, Johnson SL, Kurachi Y et al (2006) Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement. PLoS Genet 2:e197

    Article  Google Scholar 

  • Iwayama K, Zhu LP, Hirata Y, Aono M, Hara M, Aihara K (2016) Decision-making ability of Physarum polycephalum enhanced by its coordinated spatiotemporal oscillatory dynamics. Bioinspir Biomim 11:036001. //doi.org/10.1088/1748-3190/11/3/036001

    Article  Google Scholar 

  • Jaeger J, Monk N (2015) Everything flows: a process perspective on life. EMBO Rep 16:1064–1067. //doi.org/10.15252/embr.201541088

    Article  Google Scholar 

  • Jaeger J, Irons D, Monk N (2012) The inheritance of process: a dynamical systems approach. J Exp Zool B Mol Dev Evol 318:591–612. //doi.org/10.1002/jez.b.22468

    Article  Google Scholar 

  • Jaffe LF (1979) Control of development by ionic currents. In: Cone RA, and J.E. Dowling (eds) Membrane transduction mechanisms. Raven Press, New York

  • Jaffe LF (1981) The role of ionic currents in establishing developmental pattern. Philos Trans R Soc Lond B Biol Sci 295:553–566

    Article  Google Scholar 

  • Jaffe LF, Nuccitelli R (1974) An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol 63:614–628

    Article  Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Ann Rev Biophys Bioeng 6:445–476

    Article  Google Scholar 

  • Jaffe LF, Poo MM (1979) Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool 209:115–128

    Article  Google Scholar 

  • Jekely G, Keijzer F, Godfrey-Smith P (2015) An option space for early neural evolution. Philos Trans R Soc Lond B Biol Sci 370:20150181. //doi.org/10.1098/rstb.2015.0181

    Article  Google Scholar 

  • Juel BE, Comolatti R, Tononi G, Albantakis L (2019) When is an action caused from within? Quantifying the causal chain leading to actions in simulated agents. arXiv e-prints

  • Kasai S, Wakamiya R, Abe Y, Aono M, Naruse M, Miwa H, Kim S-J (2015) Physarum-inspired electronic and nanoelectronic computing systems. In: Adamatzky A (ed) Advances in physarum machines: sensing and computing with slime mold. Springer, Switzerland, pp 109–132

    Google Scholar 

  • Kauffman SA (1993) The origins of order: self organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Kauffman S, Clayton P (2006) On emergence, agency, and organization. Biol Philos 21:501–521. //doi.org/10.1007/S10539-005-9003-9

    Article  Google Scholar 

  • Keijzer FA (2017) Evolutionary convergence and biologically embodied cognition. Interface Focus 7:20160123. //doi.org/10.1098/rsfs.2016.0123

    Article  Google Scholar 

  • Keijzer F, Arnellos A (2017) The animal sensorimotor organization: a challenge for the environmental complexity thesis. Biol Philos 32:421–441. //doi.org/10.1007/s10539-017-9565-3

    Article  Google Scholar 

  • Keijzer F, van Duijn M, Lyon P (2013) What nervous systems do: early evolution, input-output, and the skin brain thesis. Adapt Behav 21:67–85. //doi.org/10.1177/1059712312465330

    Article  Google Scholar 

  • Kline D, Nuccitelli R, Robinson K (1981) Ion currents in the cleaving egg and mid-cleavage blastomeres of the amphibian embryo. J Cell Biol 91:A181–A181

    Google Scholar 

  • Kline D, Robinson KR, Nuccitelli R (1983) Ion currents and membrane domains in the cleaving xenopus egg. J Cell Biol 97:1753–1761

    Article  Google Scholar 

  • Knox SS, Funk RH (2014) Oncology and biophysics: a need for integration. J Clin Exp Oncol S1:1–6

    Google Scholar 

  • Lee DD, Prindle A, Liu J, Suel GM (2017) SnapShot: dlectrochemical communication in biofilms. Cell 170(214–214):e211. //doi.org/10.1016/j.cell.2017.06.026

    Article  Google Scholar 

  • Levin M (2014) Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Phys 592:2295–2305. //doi.org/10.1113/jphysiol.2014.271940

    Article  Google Scholar 

  • Levin, 2019 M Levin 2019 The computational boundary of a “Self”: developmental bioelectricity drives multicellularity and scale-free cognition Front Psychol 10 10.3389/fpsyg.2019.02688.

  • Levin M, Martyniuk CJ (2018) The bioelectric code: An ancient computational medium for dynamic control of growth and form. Biosystems 164:76–93. //doi.org/10.1016/j.biosystems.2017.08.009

    Article  Google Scholar 

  • Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M (2002) Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111:77–89

    Article  Google Scholar 

  • Liu J, Martinez-Corral R, Prindle A, Lee DD, Larkin J, Gabalda-Sagarra M et al (2017) Coupling between distant biofilms and emergence of nutrient time-sharing. Science 356:638–642. //doi.org/10.1126/science.aah4204

    Article  Google Scholar 

  • Manicka S, Levin M (2019) The cognitive lens: a primer on conceptual tools for analysing information processing in developmental and regenerative morphogenesis. Philos Trans R Soc Lond B Biol Sci 374:20180369. //doi.org/10.1098/rstb.2018.0369

    Article  Google Scholar 

  • Mathews AP (1903) Electrical polarity in the hydroids. Am J Physiol 8:294–299

    Article  Google Scholar 

  • Mathews J, Levin M (2018) The body electric 2.0: recent advances in developmental bioelectricity for regenerative and synthetic bioengineering. Curr Opin Biotechnol 52:134–144. //doi.org/10.1016/j.copbio.2018.03.008

    Article  Google Scholar 

  • McCaig CD (1986a) Dynamic aspects of amphibian neurite growth and the effects of an applied electric field. J Physiol 375:55–69

    Article  Google Scholar 

  • McCaig CD (1986b) Electric fields, contact guidance and the direction of nerve growth. J Embryol Exp Morphol 94:245–255

    Google Scholar 

  • McCaig CD (1987) Spinal neurite reabsorption and regrowth in vitro depend on the polarity of an applied electric field. Dev Suppl 100:31–41

    Google Scholar 

  • McCaig CD (1988) Nerve guidance: a role for bio-electric fields? Prog Neurobiol 30:449–468

    Article  Google Scholar 

  • McCaig C, Robinson K (1982) The ontogeny of trans-epidermal potential differences in frog. Dev Biol 90:335–339

    Article  Google Scholar 

  • McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978

    Article  Google Scholar 

  • McLaughlin KA, Levin M (2018) Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form. Dev Biol 433:177–189. //doi.org/10.1016/j.ydbio.2017.08.032

    Article  Google Scholar 

  • Miranda ER, Braund E, Venkatesh S (2018) Composing with biomemristors: is biocomputing the new technology of computer music? Comp Music J 42:28–46. //doi.org/10.1162/comj_a_00469

    Article  Google Scholar 

  • Moore D, Walker SI, Levin M (2017) Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. Converg Sci Phy Oncol 3:043001

    Article  Google Scholar 

  • Morgan TH, Dimon AC (1904) An examination of the problem of physiological ‘polarity’ and electrical polarity in the earthworm. J Exp Zool I

  • Mutoh H, Akemann W, Knopfel T (2012) Genetically engineered fluorescent voltage reporters. ACS Chem Neurosci 3:585–592. //doi.org/10.1021/cn300041b

    Article  Google Scholar 

  • Newman SA (2016) ‘Biogeneric’ developmental processes: drivers of major transitions in animal evolution. Philos Trans R Soc Lond B Biol Sci 371:20150443. //doi.org/10.1098/rstb.2015.0443

    Article  Google Scholar 

  • Noble D (2010) Biophysics and systems biology. Philos Trans A Math Phys Eng Sci 368:1125–1139. //doi.org/10.1098/rsta.2009.0245

    Article  Google Scholar 

  • Noble D (2012) A theory of biological relativity: no privileged level of causation. Interface Focus 2:55–64. //doi.org/10.1098/Rsfs.2011.0067

    Article  Google Scholar 

  • Nuccitelli R (1980) Vibrating probe: high spatial-resolution extracellular current measurement. Federation Proc 39:2129–2129

    Google Scholar 

  • Nuccitelli R (1986a) Ionic currents in development. Alan R, Liss, New York

    Google Scholar 

  • Nuccitelli R (1986b) A two-dimensional extracellular vibrating probe for the detection of trans-cellular ionic currents. J Cell Biol 103:A519–A519

    Google Scholar 

  • Nuccitelli R, Jaffe L (1975) Ionic components of current pulses which cross growing tips of pelvetia embryos. Biophys J 15:A123–A123

    Google Scholar 

  • Nuccitelli R, Jaffe LF (1976) Ionic components of current pulses generated by developing fucoid eggs. Dev Biol 49:518–531

    Article  Google Scholar 

  • Nuccitelli R, Poo MM, Jaffe LF (1975) Amebas drive electrical currents through themselves. J Cell Biol 67:A311–A311

    Google Scholar 

  • Nuccitelli R, Poo MM, Jaffe LF (1977) Relations between ameboid movement and membrane-controlled electrical currents. J Gen Physiol 69:743–763

    Article  Google Scholar 

  • Nuccitelli R, Robinson K, Jaffe L (1986) On electrical currents in development. BioEssays 5:292–294

    Article  Google Scholar 

  • Pai VP, Aw S, Shomrat T, Lemire JM, Levin M (2012) Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 139:313–323. //doi.org/10.1242/dev.073759

    Article  Google Scholar 

  • Pai VP, Lemire JM, Pare JF, Lin G, Chen Y, Levin M (2015) Endogenous gradients of resting potential instructively pattern embryonic neural tissue via notch signaling and regulation of proliferation. J Neurosci 35:4366–4385. //doi.org/10.1523/JNEUROSCI.1877-14.2015

    Article  Google Scholar 

  • Pai VP, Pietak A, Willocq V, Ye B, Shi NQ, Levin M (2018) HCN2 Rescues brain defects by enforcing endogenous voltage pre-patterns. Nat Comm 9:1–15. //doi.org/10.1038/s41467-018-03334-5

    Article  Google Scholar 

  • Perathoner S, Daane JM, Henrion U, Seebohm G, Higdon CW, Johnson SL et al (2014) Bioelectric signaling regulates size in zebrafish fins. PLoS Genet 10:e1004080. //doi.org/10.1371/journal.pgen.1004080

    Article  Google Scholar 

  • Pezzulo G, Levin M (2015) Re-membering the body: applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs. Integr Biol (Camb) 7:1487–1517. //doi.org/10.1039/c5ib00221d

    Article  Google Scholar 

  • Pezzulo G, Levin M (2016) Top-down models in biology: explanation and control of complex living systems above the molecular level. J R Soc Interface 13:20160555. //doi.org/10.1098/rsif.2016.0555

    Article  Google Scholar 

  • Pietak A, Bischof J, LaPalme J, Morokuma J, Levin M (2019) Neural control of body-plan axis in regenerating planaria. PLoS Comput Biol 15:e1006904. //doi.org/10.1371/journal.pcbi.1006904

    Article  Google Scholar 

  • Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Suel GM (2015) Ion channels enable electrical communication in bacterial communities. Nature. //doi.org/10.1038/nature15709

    Article  Google Scholar 

  • Ray SK, Valentini G, Shah P, Haque A, Reid CR, Weber GF, Garnier S (2019) Information transfer during food choice in the slime mold Physarum polycephalum. Front Ecol Evol 7:67. //doi.org/10.3389/fevo.2019.00067

    Article  Google Scholar 

  • Robinson KR, McCaig C (1980) Electrical fields, calcium gradients, and cell growth. Ann NY Acad Sci 339:132–138

    Article  Google Scholar 

  • Robinson KR, Jaffe LA, Brawley SH (1981) Electro-physiological properties of fucoid algal eggs during fertilization. J Cell Biol 91:A179–A179

    Google Scholar 

  • Seoane LF, Solé RV (2018) Information theory, predictability and the emergence of complex life. R Soc Open Sci 5:172221. //doi.org/10.1098/rsos.172221

    Article  Google Scholar 

  • Silic MR, Zhang G (2018) Visualization of cellular electrical activity in zebrafish early embryos and tumors. J Vis Exp. //doi.org/10.3791/57330

    Article  Google Scholar 

  • Stillwell EF, Cone CM, Cone CD (1973) Stimulation of DNA synthesis in CNS neurones by sustained depolarisation. Nat New Biol 246:110–111

    Article  Google Scholar 

  • Stump RF, Robinson KR, Harold RL, Harold FM (1980) Endogenous electrical currents in the water mold blastocladiella-emersonii during growth and sporulation. Proc Nat Acad Sci USA-Biol Sci 77:6673–6677

    Article  Google Scholar 

  • Sullivan KG, Emmons-Bell M, Levin M (2016) Physiological inputs regulate species-specific anatomy during embryogenesis and regeneration. Commun Integr Biol 9:e1192733. //doi.org/10.1080/19420889.2016.1192733

    Article  Google Scholar 

  • Torday JS, Miller WB Jr (2016) Biologic relativity: who is the observer and what is observed? Prog Biophys Mol Biol 121:29–34. //doi.org/10.1016/j.pbiomolbio.2016.03.001

    Article  Google Scholar 

  • Vandenberg LN, Morrie RD, Adams DS (2011) V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. Dev Dyn 240:1889–1904. //doi.org/10.1002/dvdy.22685

    Article  Google Scholar 

  • Vogel D, Dussutour A, Deneubourg JL (2018) Symmetry breaking and inter-clonal behavioural variability in a slime mould. Biol Lett 14:20180504. //doi.org/10.1098/rsbl.2018.0504

    Article  Google Scholar 

  • von Bertalanffy L (1967) Robots, men, and minds: psychology in the modern world. G. Braziller, New York

    Google Scholar 

  • von Bertalanffy L (1968) Organismic psychology and systems theory: Heinz Werner lectures, vol 1966. Clark University Press, Worcester

    Google Scholar 

  • von Bertalanffy L, Woodger JH (1962) Modern theories of development: an introduction to theoretical biology. Harper, New York

    Google Scholar 

  • Walker SI, Kim H, Davies PC (2016) The informational architecture of the cell. Philos Trans A Math Phys Eng Sci 374:20150057. //doi.org/10.1098/rsta.2015.0057

    Article  Google Scholar 

  • Weisenseel MH, Nuccitelli R, Jaffe LF (1975) Large electrical currents traverse growing pollen tubes. J Cell Biol 66:556–567

    Article  Google Scholar 

  • Weiss P (1950) Perspectives in the field of morphogenesis. Q Rev Biol 25:177–198. //doi.org/10.1086/397540

    Article  Google Scholar 

  • Woodger JH (1930) The “concept of organism” and the relation between embryology and genetics—Part 1. Q Rev Biol 5:1–22. //doi.org/10.1086/394349

    Article  Google Scholar 

  • Woodger JH (1931) The “concept of organism” and the relation between embryology and genetics—Part III. Q Rev Biol 6:178–207. //doi.org/10.1086/394376

    Article  Google Scholar 

  • Yang M, Brackenbury WJ (2013) Membrane potential and cancer progression. Front Physiol 4:185. //doi.org/10.3389/fphys.2013.00185

    Article  Google Scholar 

  • Zhu L, Kim SJ, Hara M, Aono M (2018) Remarkable problem-solving ability of unicellular amoeboid organism and its mechanism. R Soc Open Sci 5:180396. //doi.org/10.1098/rsos.180396

    Article  Google Scholar 

  • Toplist

    Neuester Beitrag

    Stichworte